These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19004797)

  • 21. Signaling states of rhodopsin. Formation of the storage form, metarhodopsin III, from active metarhodopsin II.
    Heck M; Schädel SA; Maretzki D; Bartl FJ; Ritter E; Palczewski K; Hofmann KP
    J Biol Chem; 2003 Jan; 278(5):3162-9. PubMed ID: 12427735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on structure and function of rhodopsin by use of cyclopentatrienylidene 11-cis-locked-rhodopsin.
    Fukada Y; Shichida Y; Yoshizawa T; Ito M; Kodama A; Tsukida K
    Biochemistry; 1984 Nov; 23(24):5826-32. PubMed ID: 6098298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of the 19-functionalised visual pigment analogue.
    Ito M; Iwata T; Tsukida K; Shichida Y; Yoshizawa T
    J Nutr Sci Vitaminol (Tokyo); 1984 Dec; 30(6):577-80. PubMed ID: 6533276
    [No Abstract]   [Full Text] [Related]  

  • 26. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman.
    Kukura P; McCamant DW; Yoon S; Wandschneider DB; Mathies RA
    Science; 2005 Nov; 310(5750):1006-9. PubMed ID: 16284176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photochemical reaction cycle and proton transfers in Neurospora rhodopsin.
    Brown LS; Dioumaev AK; Lanyi JK; Spudich EN; Spudich JL
    J Biol Chem; 2001 Aug; 276(35):32495-505. PubMed ID: 11435422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pKa of the protonated Schiff base of visual pigments.
    Ebrey TG
    Methods Enzymol; 2000; 315():196-207. PubMed ID: 10736703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deactivation and proton transfer in light-induced metarhodopsin II/metarhodopsin III conversion: a time-resolved fourier transform infrared spectroscopic study.
    Ritter E; Elgeti M; Hofmann KP; Bartl FJ
    J Biol Chem; 2007 Apr; 282(14):10720-30. PubMed ID: 17287211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural changes in bacteriorhodopsin during the photocycle measured by time-resolved polarized Fourier transform infrared spectroscopy.
    Kelemen L; Ormos P
    Biophys J; 2001 Dec; 81(6):3577-89. PubMed ID: 11721018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinal chromophore of rhodopsin photoisomerizes within picoseconds.
    Hayward G; Carlsen W; Siegman A; Stryer L
    Science; 1981 Feb; 211(4485):942-4. PubMed ID: 7466366
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins.
    Rinaldi S; Melaccio F; Gozem S; Fanelli F; Olivucci M
    Proc Natl Acad Sci U S A; 2014 Feb; 111(5):1714-9. PubMed ID: 24449866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoisomerization in rhodopsin.
    Kandori H; Shichida Y; Yoshizawa T
    Biochemistry (Mosc); 2001 Nov; 66(11):1197-209. PubMed ID: 11743865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First step in vision: proton transfer or isomerization?
    Dupuis P; Hárosi FI; Sándorfy C; Leclercq JM; Vocelle D
    Rev Can Biol; 1980 Dec; 39(4):247-58. PubMed ID: 6262882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative studies on the late bleaching processes of four kinds of cone visual pigments and rod visual pigment.
    Sato K; Yamashita T; Imamoto Y; Shichida Y
    Biochemistry; 2012 May; 51(21):4300-8. PubMed ID: 22571736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cis-trans isomerization of conjugated polyenes and the occurrence of a hindered cis-isomer of retinene in the rhodopsin system.
    PULLMAN A; PULLMAN B
    Proc Natl Acad Sci U S A; 1961 Jan; 47(1):7-14. PubMed ID: 13738465
    [No Abstract]   [Full Text] [Related]  

  • 37. Schiff base protonation changes in Siberian hamster ultraviolet cone pigment photointermediates.
    Mooney VL; Szundi I; Lewis JW; Yan EC; Kliger DS
    Biochemistry; 2012 Mar; 51(12):2630-7. PubMed ID: 22394396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation.
    Nakagawa M; Iwasa T; Kikkawa S; Tsuda M; Ebrey TG
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6189-92. PubMed ID: 10339563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
    Ritter E; Stehfest K; Berndt A; Hegemann P; Bartl FJ
    J Biol Chem; 2008 Dec; 283(50):35033-41. PubMed ID: 18927082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral tuning of shortwave-sensitive visual pigments in vertebrates.
    Hunt DM; Carvalho LS; Cowing JA; Parry JW; Wilkie SE; Davies WL; Bowmaker JK
    Photochem Photobiol; 2007; 83(2):303-10. PubMed ID: 17576346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.