BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19004819)

  • 1. Molecular basis for enzymatic sulfite oxidation: how three conserved active site residues shape enzyme activity.
    Bailey S; Rapson T; Johnson-Winters K; Astashkin AV; Enemark JH; Kappler U
    J Biol Chem; 2009 Jan; 284(4):2053-63. PubMed ID: 19004819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and structural evidence for the importance of Tyr236 for the integrity of the Mo active site in a bacterial sulfite dehydrogenase.
    Kappler U; Bailey S; Feng C; Honeychurch MJ; Hanson GR; Bernhardt PV; Tollin G; Enemark JH
    Biochemistry; 2006 Aug; 45(32):9696-705. PubMed ID: 16893171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulsed EPR investigations of the Mo(V) centers of the R55Q and R55M variants of sulfite dehydrogenase from Starkeya novella.
    Rapson TD; Astashkin AV; Johnson-Winters K; Bernhardt PV; Kappler U; Raitsimring AM; Enemark JH
    J Biol Inorg Chem; 2010 May; 15(4):505-14. PubMed ID: 20084533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short circuiting a sulfite oxidising enzyme with direct electrochemistry: active site substitutions and their effect on catalysis and electron transfer.
    Rapson TD; Kappler U; Hanson GR; Bernhardt PV
    Biochim Biophys Acta; 2011 Jan; 1807(1):108-18. PubMed ID: 20863809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfite oxidizing enzymes.
    Feng C; Tollin G; Enemark JH
    Biochim Biophys Acta; 2007 May; 1774(5):527-39. PubMed ID: 17459792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses.
    Johnson-Winters K; Tollin G; Enemark JH
    Biochemistry; 2010 Aug; 49(34):7242-54. PubMed ID: 20666399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic voltammetry of the molybdoenzyme sulfite dehydrogenase from Sinorhizobium meliloti.
    Kalimuthu P; Kappler U; Bernhardt PV
    J Phys Chem B; 2014 Jun; 118(25):7091-9. PubMed ID: 24892218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramolecular electron transfer in sulfite-oxidizing enzymes: elucidating the role of a conserved active site arginine.
    Emesh S; Rapson TD; Rajapakshe A; Kappler U; Bernhardt PV; Tollin G; Enemark JH
    Biochemistry; 2009 Mar; 48(10):2156-63. PubMed ID: 19226119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions.
    Hsiao JC; McGrath AP; Kielmann L; Kalimuthu P; Darain F; Bernhardt PV; Harmer J; Lee M; Meyers K; Maher MJ; Kappler U
    Biochim Biophys Acta Bioenerg; 2018 Jan; 1859(1):19-27. PubMed ID: 28986298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exchangeable oxygens in the vicinity of the molybdenum center of the high-pH form of sulfite oxidase and sulfite dehydrogenase.
    Astashkin AV; Klein EL; Ganyushin D; Johnson-Winters K; Neese F; Kappler U; Enemark JH
    Phys Chem Chem Phys; 2009 Aug; 11(31):6733-42. PubMed ID: 19639147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit.
    Kappler U; Bailey S
    J Biol Chem; 2005 Jul; 280(26):24999-5007. PubMed ID: 15863498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial sulfite-oxidizing enzymes.
    Kappler U
    Biochim Biophys Acta; 2011 Jan; 1807(1):1-10. PubMed ID: 20851097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the active site of sulfite dehydrogenase from Starkeya novella.
    Doonan CJ; Kappler U; George GN
    Inorg Chem; 2006 Sep; 45(18):7488-92. PubMed ID: 16933953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evidence for a reaction intermediate mimic in the active site of a sulfite dehydrogenase.
    Djeghader A; Rossotti M; Abdulkarim S; Biaso F; Gerbaud G; Nitschke W; Schoepp-Cothenet B; Soulimane T; Grimaldi S
    Chem Commun (Camb); 2020 Aug; 56(68):9850-9853. PubMed ID: 32716419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based alteration of substrate specificity and catalytic activity of sulfite oxidase from sulfite oxidation to nitrate reduction.
    Qiu JA; Wilson HL; Rajagopalan KV
    Biochemistry; 2012 Feb; 51(6):1134-47. PubMed ID: 22263579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulsed EPR studies of a bacterial sulfite-oxidizing enzyme with pH-invariant hyperfine interactions from exchangeable protons.
    Raitsimring AM; Kappler U; Feng C; Astashkin AV; Enemark JH
    Inorg Chem; 2005 Oct; 44(21):7283-5. PubMed ID: 16212344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfite-oxidizing enzymes.
    Kappler U; Enemark JH
    J Biol Inorg Chem; 2015 Mar; 20(2):253-64. PubMed ID: 25261289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of tyrosine 343 in substrate binding and catalysis by human sulfite oxidase.
    Wilson HL; Rajagopalan KV
    J Biol Chem; 2004 Apr; 279(15):15105-13. PubMed ID: 14729666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site.
    Qiu JA; Wilson HL; Pushie MJ; Kisker C; George GN; Rajagopalan KV
    Biochemistry; 2010 May; 49(18):3989-4000. PubMed ID: 20356030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct catalytic electrochemistry of sulfite dehydrogenase: mechanistic insights and contrasts with related Mo enzymes.
    Rapson TD; Kappler U; Bernhardt PV
    Biochim Biophys Acta; 2008 Oct; 1777(10):1319-25. PubMed ID: 18601898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.