These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19005003)

  • 1. Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat.
    Ross KT; Nichols TR
    J Neurophysiol; 2009 Jan; 101(1):184-97. PubMed ID: 19005003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical actions of heterogenic reflexes linking long toe flexors with ankle and knee extensors of the cat hindlimb.
    Bonasera SJ; Nichols TR
    J Neurophysiol; 1994 Mar; 71(3):1096-110. PubMed ID: 8201405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical actions of heterogenic reflexes among ankle stabilizers and their interactions with plantarflexors of the cat hindlimb.
    Bonasera SJ; Nichols TR
    J Neurophysiol; 1996 May; 75(5):2050-70. PubMed ID: 8734603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat.
    Nichols TR
    J Neurophysiol; 1999 Feb; 81(2):467-78. PubMed ID: 10036251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of heterogenic reflexes among the quadriceps and triceps surae muscles of the cat hind limb.
    Wilmink RJ; Nichols TR
    J Neurophysiol; 2003 Oct; 90(4):2310-24. PubMed ID: 12826657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat.
    Nichols TR
    J Physiol; 1989 Mar; 410():463-77. PubMed ID: 2795487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of intermuscular inhibitory force feedback across cat hindlimbs suggest a flexible system for regulating whole limb mechanics.
    Lyle MA; Nichols TR
    J Neurophysiol; 2018 Feb; 119(2):668-678. PubMed ID: 29142095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical analysis of heterogenic inhibition between soleus muscle and the pretibial flexors in the cat.
    Nichols TR; Koffler-Smulevitz D
    J Neurophysiol; 1991 Oct; 66(4):1139-55. PubMed ID: 1761977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of positive force feedback among hindlimb extensors in the intact standing cat.
    Pratt CA
    J Neurophysiol; 1995 Jun; 73(6):2578-83. PubMed ID: 7666164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat.
    Gossard JP; Brownstone RM; Barajon I; Hultborn H
    Exp Brain Res; 1994; 98(2):213-28. PubMed ID: 8050508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity.
    Fleshman JW; Lev-Tov A; Burke RE
    Exp Brain Res; 1984; 54(1):133-49. PubMed ID: 6321220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recruitment of triceps surae motor units in the decerebrate cat. II. Heterogeneity among soleus motor units.
    Sokoloff AJ; Cope TC
    J Neurophysiol; 1996 May; 75(5):2005-16. PubMed ID: 8734599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of force feedback to ankle extensor activity in decerebrate walking cats.
    Donelan JM; Pearson KG
    J Neurophysiol; 2004 Oct; 92(4):2093-104. PubMed ID: 15381742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of locomotion in the decerebrate cat.
    Whelan PJ
    Prog Neurobiol; 1996 Aug; 49(5):481-515. PubMed ID: 8895997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of oligosynaptic cutaneous and muscle afferent reflex pathways during fictive locomotion and scratching in the cat.
    Degtyarenko AM; Simon ES; Norden-Krichmar T; Burke RE
    J Neurophysiol; 1998 Jan; 79(1):447-63. PubMed ID: 9425213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redistribution of inhibitory force feedback between a long toe flexor and the major ankle extensor muscles following spinal cord injury.
    Niazi IF; Lyle MA; Rising A; Howland DR; Nichols TR
    J Neurosci Res; 2020 Aug; 98(8):1646-1661. PubMed ID: 32537945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel reflex pathways from flexor muscle afferents evoking resetting and flexion enhancement during fictive locomotion and scratch in the cat.
    Stecina K; Quevedo J; McCrea DA
    J Physiol; 2005 Nov; 569(Pt 1):275-90. PubMed ID: 16141269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tonic and phasic discharge patterns in toe flexor gamma-motoneurons during locomotion in the decerebrate cat.
    Murphy PR
    J Neurophysiol; 2002 Jan; 87(1):286-94. PubMed ID: 11784750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gain of the triceps surae stretch reflex in decerebrate and spinal cats during postural and locomotor activities.
    Bennett DJ; De Serres SJ; Stein RB
    J Physiol; 1996 Nov; 496 ( Pt 3)(Pt 3):837-50. PubMed ID: 8930848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanical action of proprioceptive length feedback in a model of cat hindlimb.
    Burkholder TJ; Nicols TR
    Motor Control; 2000 Apr; 4(2):201-20. PubMed ID: 11508248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.