These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 19005048)
1. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. Kipke DR; Shain W; Buzsáki G; Fetz E; Henderson JM; Hetke JF; Schalk G J Neurosci; 2008 Nov; 28(46):11830-8. PubMed ID: 19005048 [No Abstract] [Full Text] [Related]
2. Brain-machine interfaces: computational demands and clinical needs meet basic neuroscience. Mussa-Ivaldi FA; Miller LE Trends Neurosci; 2003 Jun; 26(6):329-34. PubMed ID: 12798603 [TBL] [Abstract][Full Text] [Related]
3. TMS-EEG: a technique that has come of age? Fitzgerald PB Clin Neurophysiol; 2010 Mar; 121(3):265-7. PubMed ID: 20005160 [No Abstract] [Full Text] [Related]
4. Control of a neuroprosthesis for grasping using off-line classification of electrocorticographic signals: case study. Márquez-Chin C; Popovic MR; Cameron T; Lozano AM; Chen R Spinal Cord; 2009 Nov; 47(11):802-8. PubMed ID: 19381156 [TBL] [Abstract][Full Text] [Related]
5. The science of neural interface systems. Hatsopoulos NG; Donoghue JP Annu Rev Neurosci; 2009; 32():249-66. PubMed ID: 19400719 [TBL] [Abstract][Full Text] [Related]
9. Chapter 7 - Neuromodulation: Deep brain stimulation, sensory neuroprostheses, and the neural-electrical interface. Andrews RJ Prog Brain Res; 2009; 180():127-39. PubMed ID: 20302832 [TBL] [Abstract][Full Text] [Related]
10. Development of a chipscale integrated microelectrode/microelectronic device for brain implantable neuroengineering applications. Song YK; Patterson WR; Bull CW; Beals J; Hwang N; Deangelis AP; Lay C; McKay JL; Nurmikko AV; Fellows MR; Simeral JD; Donoghue JP; Connors BW IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):220-6. PubMed ID: 16003903 [TBL] [Abstract][Full Text] [Related]
11. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. Sodagar AM; Wise KD; Najafi K IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1075-88. PubMed ID: 17554826 [TBL] [Abstract][Full Text] [Related]
12. Semi-chronic motorized microdrive and control algorithm for autonomously isolating and maintaining optimal extracellular action potentials. Cham JG; Branchaud EA; Nenadic Z; Greger B; Andersen RA; Burdick JW J Neurophysiol; 2005 Jan; 93(1):570-9. PubMed ID: 15229215 [TBL] [Abstract][Full Text] [Related]
13. Microdialysis in freely moving animals with simultaneous recording of electrophysiological processes at the dialysate collection point. Korshunov VA Neurosci Behav Physiol; 2006 Jul; 36(6):583-7. PubMed ID: 16783510 [No Abstract] [Full Text] [Related]
14. A direct brain interface based on event-related potentials. Levine SP; Huggins JE; BeMent SL; Kushwaha RK; Schuh LA; Rohde MM; Passaro EA; Ross DA; Elisevich KV; Smith BJ IEEE Trans Rehabil Eng; 2000 Jun; 8(2):180-5. PubMed ID: 10896180 [TBL] [Abstract][Full Text] [Related]
15. Control of current and future neural prostheses. Popovic DB Med Eng Phys; 2003 Jan; 25(1):1-2. PubMed ID: 12485780 [No Abstract] [Full Text] [Related]
16. A novel system for recording from single neurons in unrestrained animals. Sherk H; Wilkinson EJ J Neurosci Methods; 2008 Aug; 173(2):201-7. PubMed ID: 18619491 [TBL] [Abstract][Full Text] [Related]
18. Adapting human-machine interfaces to user performance. Danziger Z; Fishbach A; Mussa-Ivaldi FA Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4486-90. PubMed ID: 19163712 [TBL] [Abstract][Full Text] [Related]
19. Platinum electrode noise in the ENG spectrum. Liu X; Demosthenous A; Donaldson N Med Biol Eng Comput; 2008 Oct; 46(10):997-1003. PubMed ID: 18777185 [TBL] [Abstract][Full Text] [Related]
20. Invasive or noninvasive: understanding brain-machine interface technology. Millán Jdel R; Carmena JM IEEE Eng Med Biol Mag; 2010; 29(1):16-22. PubMed ID: 20209672 [No Abstract] [Full Text] [Related] [Next] [New Search]