BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 19005049)

  • 21. Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat.
    Miyake S; Sumi Y; Yan L; Takekida S; Fukuyama T; Ishida Y; Yamaguchi S; Yagita K; Okamura H
    Neurosci Lett; 2000 Nov; 294(1):41-4. PubMed ID: 11044582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei.
    Coogan AN; Piggins HD
    Eur J Neurosci; 2005 Jul; 22(1):158-68. PubMed ID: 16029205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted mutation of the calbindin D28K gene disrupts circadian rhythmicity and entrainment.
    Kriegsfeld LJ; Mei DF; Yan L; Witkovsky P; Lesauter J; Hamada T; Silver R
    Eur J Neurosci; 2008 Jun; 27(11):2907-21. PubMed ID: 18588531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice.
    Bode B; Taneja R; Rossner MJ; Oster H
    Chronobiol Int; 2011 Nov; 28(9):737-50. PubMed ID: 22080784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis.
    Amir S; Lamont EW; Robinson B; Stewart J
    J Neurosci; 2004 Jan; 24(4):781-90. PubMed ID: 14749422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude.
    Vitaterna MH; Ko CH; Chang AM; Buhr ED; Fruechte EM; Schook A; Antoch MP; Turek FW; Takahashi JS
    Proc Natl Acad Sci U S A; 2006 Jun; 103(24):9327-32. PubMed ID: 16754844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice.
    Abe H; Honma S; Honma K
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R607-15. PubMed ID: 16990494
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro.
    Abraham U; Prior JL; Granados-Fuentes D; Piwnica-Worms DR; Herzog ED
    J Neurosci; 2005 Sep; 25(38):8620-6. PubMed ID: 16177029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonphotic entrainment of central and peripheral circadian clocks in mice by scheduled voluntary exercise under constant darkness.
    Sato RY; Yamanaka Y
    Am J Physiol Regul Integr Comp Physiol; 2023 Apr; 324(4):R526-R535. PubMed ID: 36802951
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term constant light induces constitutive elevated expression of mPER2 protein in the murine SCN: a molecular basis for Aschoff's rule?
    Muñoz M; Peirson SN; Hankins MW; Foster RG
    J Biol Rhythms; 2005 Feb; 20(1):3-14. PubMed ID: 15654066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disruption of mCry2 restores circadian rhythmicity in mPer2 mutant mice.
    Oster H; Yasui A; van der Horst GT; Albrecht U
    Genes Dev; 2002 Oct; 16(20):2633-8. PubMed ID: 12381662
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aberrant gating of photic input to the suprachiasmatic circadian pacemaker of mice lacking the VPAC2 receptor.
    Hughes AT; Fahey B; Cutler DJ; Coogan AN; Piggins HD
    J Neurosci; 2004 Apr; 24(14):3522-6. PubMed ID: 15071099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-specific rescue of Clock reveals system-driven transcriptional rhythms in peripheral tissue.
    Hughes ME; Hong HK; Chong JL; Indacochea AA; Lee SS; Han M; Takahashi JS; Hogenesch JB
    PLoS Genet; 2012; 8(7):e1002835. PubMed ID: 22844252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavioural rhythm splitting in the CS mouse is related to clock gene expression outside the suprachiasmatic nucleus.
    Abe H; Honma S; Namihira M; Masubuchi S; Honma K
    Eur J Neurosci; 2001 Oct; 14(7):1121-8. PubMed ID: 11683904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic interaction of Per1 and Dec1/2 in the regulation of circadian locomotor activity.
    Bode B; Shahmoradi A; Taneja R; Rossner MJ; Oster H
    J Biol Rhythms; 2011 Dec; 26(6):530-40. PubMed ID: 22215611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constant light desynchronizes mammalian clock neurons.
    Ohta H; Yamazaki S; McMahon DG
    Nat Neurosci; 2005 Mar; 8(3):267-9. PubMed ID: 15746913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ORL1 receptor-mediated down-regulation of mPER2 in the suprachiasmatic nucleus accelerates re-entrainment of the circadian clock following a shift in the environmental light/dark cycle.
    Miyakawa K; Uchida A; Shiraki T; Teshima K; Takeshima H; Shibata S
    Neuropharmacology; 2007 Mar; 52(3):1055-64. PubMed ID: 17196226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Day-length encoding through tonic photic effects in the retinorecipient SCN region.
    Yan L; Silver R
    Eur J Neurosci; 2008 Nov; 28(10):2108-15. PubMed ID: 19046391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of photic stimuli disturbing overt circadian rhythms on the dorsomedial and ventrolateral SCN rhythmicity.
    Sumová A; Illnerová H
    Brain Res; 2005 Jun; 1048(1-2):161-9. PubMed ID: 15913573
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.