These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 19005058)

  • 1. Ambiguous pitch and the temporal representation of inharmonic iterated rippled noise in the ventral cochlear nucleus.
    Sayles M; Winter IM
    J Neurosci; 2008 Nov; 28(46):11925-38. PubMed ID: 19005058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal representation of the delay of iterated rippled noise in the dorsal cochlear nucleus.
    Neuert V; Verhey JL; Winter IM
    J Neurophysiol; 2005 May; 93(5):2766-76. PubMed ID: 15846001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The temporal representation of the delay of iterated rippled noise with positive or negative gain by chopper units in the cochlear nucleus.
    Verhey JL; Winter IM
    Hear Res; 2006; 216-217():43-51. PubMed ID: 16716545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal representation of iterated rippled noise as a function of delay and sound level in the ventral cochlear nucleus.
    Wiegrebe L; Winter IM
    J Neurophysiol; 2001 Mar; 85(3):1206-19. PubMed ID: 11247990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The temporal representation of the delay of dynamic iterated rippled noise with positive and negative gain by single units in the ventral cochlear nucleus.
    Sayles M; Winter IM
    Brain Res; 2007 Sep; 1171():52-66. PubMed ID: 17803979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The temporal representation of the delay of iterated rippled noise in the ventral cochlear nucleus of the guinea-pig.
    Winter IM; Wiegrebe L; Patterson RD
    J Physiol; 2001 Dec; 537(Pt 2):553-66. PubMed ID: 11731585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The representation of periodic sounds in simulated sustained chopper units of the ventral cochlear nucleus.
    Wiegrebe L; Meddis R
    J Acoust Soc Am; 2004 Mar; 115(3):1207-18. PubMed ID: 15058342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of cochlear nucleus units in the chinchilla to iterated rippled noises: analysis of neural autocorrelograms.
    Shofner WP
    J Neurophysiol; 1999 Jun; 81(6):2662-74. PubMed ID: 10368386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of the spectral dominance region of pitch in the steady-state temporal discharge patterns of cochlear nucleus units.
    Shofner WP
    J Acoust Soc Am; 2008 Nov; 124(5):3038-52. PubMed ID: 19045790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human frequency following responses to iterated rippled noise with positive and negative gain: Differential sensitivity to waveform envelope and temporal fine-structure.
    Ananthakrishnan S; Krishnan A
    Hear Res; 2018 Sep; 367():113-123. PubMed ID: 30096491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of envelope modulation in spectrally unresolved iterated rippled noise.
    Wiegrebe L; Patterson RD
    Hear Res; 1999 Jun; 132(1-2):94-108. PubMed ID: 10392552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch.
    Cariani PA; Delgutte B
    J Neurophysiol; 1996 Sep; 76(3):1717-34. PubMed ID: 8890287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus.
    Pressnitzer D; Meddis R; Delahaye R; Winter IM
    J Neurosci; 2001 Aug; 21(16):6377-86. PubMed ID: 11487661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth electrode recordings show double dissociation between pitch processing in lateral Heschl's gyrus and sound onset processing in medial Heschl's gyrus.
    Schönwiesner M; Zatorre RJ
    Exp Brain Res; 2008 May; 187(1):97-105. PubMed ID: 18236034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.
    Paraouty N; Stasiak A; Lorenzi C; Varnet L; Winter IM
    J Neurosci; 2018 Apr; 38(17):4123-4137. PubMed ID: 29599389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural encoding of single-formant stimuli in the ventral cochlear nucleus of the chinchilla.
    Rhode WS
    Hear Res; 1998 Mar; 117(1-2):39-56. PubMed ID: 9557977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth.
    Palmer AR; Jiang D; Marshall DH
    J Neurophysiol; 1996 Feb; 75(2):780-94. PubMed ID: 8714652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and mean rate discharge patterns of single units in the dorsal cochlear nucleus of the anesthetized guinea pig.
    Stabler SE; Palmer AR; Winter IM
    J Neurophysiol; 1996 Sep; 76(3):1667-88. PubMed ID: 8890284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encoding of amplitude modulation in the cochlear nucleus of the cat.
    Rhode WS; Greenberg S
    J Neurophysiol; 1994 May; 71(5):1797-825. PubMed ID: 8064349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverberation challenges the temporal representation of the pitch of complex sounds.
    Sayles M; Winter IM
    Neuron; 2008 Jun; 58(5):789-801. PubMed ID: 18549789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.