These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 19005547)

  • 1. Illumination controls differentiation of dopamine neurons regulating behaviour.
    Dulcis D; Spitzer NC
    Nature; 2008 Nov; 456(7219):195-201. PubMed ID: 19005547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contexts for dopamine specification by calcium spike activity in the CNS.
    Velázquez-Ulloa NA; Spitzer NC; Dulcis D
    J Neurosci; 2011 Jan; 31(1):78-88. PubMed ID: 21209192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunocytochemistry and in situ hybridization of neuropeptide Y in the hypothalamus of Xenopus laevis in relation to background adaptation.
    Tuinhof R; Laurent FY; Ebbers RG; Smeets WJ; Van Riel MC; Roubos EW
    Neuroscience; 1993 Aug; 55(3):667-75. PubMed ID: 8413929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of retinohypothalamic input, suprachiasmatic nucleus, magnocellular nucleus and locus coeruleus in control of melanotrope cells of Xenopus laevis: a retrograde and anterograde tracing study.
    Tuinhof R; Artero C; Fasolo A; Franzoni MF; Ten Donkelaar HJ; Wismans PG; Roubos EW
    Neuroscience; 1994 Jul; 61(2):411-20. PubMed ID: 7526268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous illumination through larval development suppresses dopamine synthesis in the suprachiasmatic nucleus, causing activation of α-MSH synthesis in the pituitary and abnormal metamorphic skin pigmentation in flounder.
    Itoh K; Washio Y; Fujinami Y; Shimizu D; Uji S; Yokoi H; Suzuki T
    Gen Comp Endocrinol; 2012 Apr; 176(2):215-21. PubMed ID: 22326352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of hypothalamic nuclei in the dopaminergic control of background adaptation in Xenopus laevis.
    Tuinhof R; de Rijk EP; Wismans RG; Smeets WJ; Roubos EW
    Ann N Y Acad Sci; 1993 May; 680():486-8. PubMed ID: 8099777
    [No Abstract]   [Full Text] [Related]  

  • 7. Neuroscience: Light moulds plastic brains.
    Thor S
    Nature; 2008 Nov; 456(7219):177-8. PubMed ID: 19005538
    [No Abstract]   [Full Text] [Related]  

  • 8. Central control of melanotrope cells of Xenopus laevis.
    Tuinhof R; González A; Smeets WJ; Scheenen WJ; Roubos EW
    Eur J Morphol; 1994 Aug; 32(2-4):307-10. PubMed ID: 7803185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forebrain differentiation and axonogenesis in amphibians: I. Differentiation of the suprachiasmatic nucleus in relation to background adaptation behavior.
    Eagleson GW; Ubink R; Jenks BG; Roubos EW
    Brain Behav Evol; 1998; 52(1):23-36. PubMed ID: 9667806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional organization of the suprachiasmatic nucleus of Xenopus laevis in relation to background adaptation.
    Kramer BM; Welting J; Berghs CA; Jenks BG; Roubos EW
    J Comp Neurol; 2001 Apr; 432(3):346-55. PubMed ID: 11246212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of suprachiasmatic melanotrope-inhibiting neurons in Xenopus laevis: a confocal laser-scanning microscopy study.
    Ubink R; Tuinhof R; Roubos EW
    J Comp Neurol; 1998 Jul; 397(1):60-8. PubMed ID: 9671279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis.
    Jenks BG; Kidane AH; Scheenen WJ; Roubos EW
    Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis.
    Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW
    J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive light stimulation inducing glycine receptor plasticity in the retinal neurons.
    Shen W
    J Neurophysiol; 2005 Sep; 94(3):2231-8. PubMed ID: 16105957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons.
    Zhang W; Ge W; Wang Z
    Eur J Neurosci; 2007 Nov; 26(9):2405-16. PubMed ID: 17970730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonselective cation channels are essential for maintaining intracellular Ca2+ levels and spontaneous firing activity in the midbrain dopamine neurons.
    Kim SH; Choi YM; Jang JY; Chung S; Kang YK; Park MK
    Pflugers Arch; 2007 Nov; 455(2):309-21. PubMed ID: 17492308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia.
    Roubos EW
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):533-50. PubMed ID: 9406433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-dependent regulation of neurotransmitter specification and embryonic neuronal calcium spike activity.
    Xiao Q; Xu L; Spitzer NC
    J Neurosci; 2010 Apr; 30(16):5792-801. PubMed ID: 20410131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuropeptide Y in the developing and adult brain of the South African clawed toad Xenopus laevis.
    Tuinhof R; González A; Smeets WJ; Roubos EW
    J Chem Neuroanat; 1994 Oct; 7(4):271-83. PubMed ID: 7873097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina.
    Witkovsky P; Veisenberger E; Haycock JW; Akopian A; Garcia-Espana A; Meller E
    J Neurosci; 2004 Apr; 24(17):4242-9. PubMed ID: 15115820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.