BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19005965)

  • 1. The effect of applied pressure on the electrical impedance of the bladder tissue using small and large probes.
    Keshtkar A; Keshtkar A
    J Med Eng Technol; 2008; 32(6):505-11. PubMed ID: 19005965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical impedance spectroscopy and the diagnosis of bladder pathology.
    Keshtkar A; Keshtkar A; Smallwood RH
    Physiol Meas; 2006 Jul; 27(7):585-96. PubMed ID: 16705257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface fluids effects on the bladder tissue characterisation using electrical impedance spectroscopy.
    Keshtkar A; Mesbahi A; Mehnati P; Keshtkar A
    Med Eng Phys; 2008 Jul; 30(6):693-9. PubMed ID: 17804272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of computational modelling technique to detect the bladder cancer.
    Keshtkar A; Mesbahi A; Rasta SH; Keshtkar A
    Phys Med; 2010 Jan; 26(1):34-7. PubMed ID: 19604712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and construction of small sized pencil probe to measure bio-impedance.
    Keshtkar A
    Med Eng Phys; 2007 Nov; 29(9):1043-8. PubMed ID: 17118691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling the electrical properties of bladder tissue--quantifying impedance changes due to inflammation and oedema.
    Walker DC; Smallwood RH; Keshtar A; Wilkinson BA; Hamdy FC; Lee JA
    Physiol Meas; 2005 Jun; 26(3):251-68. PubMed ID: 15798300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical bioimpedance readings increase with higher pressure applied to the measuring probe.
    González-Correa CA; Brown BH; Smallwood RH; Walker DC; Bardhan KD
    Physiol Meas; 2005 Apr; 26(2):S39-47. PubMed ID: 15798245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeled current distribution inside the normal and malignant human urothelium using finite element analysis.
    Keshtkar A; Keshtkar A
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):733-8. PubMed ID: 18270011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical impedance spectroscopy (EIS) in the urinary bladder: the effect of inflammation and edema on identification of malignancy.
    Smallwood RH; Keshtkar A; Wilkinson BA; Lee JA; Hamdy FC
    IEEE Trans Med Imaging; 2002 Jun; 21(6):708-10. PubMed ID: 12166869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive electrical impedance analysis to measure human urinary bladder volume.
    Liao WC; Jaw FS
    J Obstet Gynaecol Res; 2011 Aug; 37(8):1071-5. PubMed ID: 21501322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple biopsy probe sampling enabled minimally invasive electrical impedance tomography.
    Shini M; Rubinsky B
    Physiol Meas; 2008 Jan; 29(1):109-26. PubMed ID: 18175863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical impedance spectroscopy of the human prostate.
    Halter RJ; Hartov A; Heaney JA; Paulsen KD; Schned AR
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1321-7. PubMed ID: 17605363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive and microinvasive electrical impedance spectra of skin cancer - a comparison between two techniques.
    Aberg P; Geladi P; Nicander I; Hansson J; Holmgren U; Ollmar S
    Skin Res Technol; 2005 Nov; 11(4):281-6. PubMed ID: 16221145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic field influence on electrical properties of human blood measured by impedance spectroscopy.
    Sosa M; Bernal-Alvarado J; Jiménez-Moreno M; Hernández JC; Gutiérrez-Juárez G; Vargas-Luna M; Huerta R; Villagómez-Castro JC; Palomares P
    Bioelectromagnetics; 2005 Oct; 26(7):564-70. PubMed ID: 16142780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical impedance spectroscopy and the diagnosis of bladder pathology: a pilot study.
    Wilkinson BA; Smallwood RH; Keshtar A; Lee JA; Hamdy FC
    J Urol; 2002 Oct; 168(4 Pt 1):1563-7. PubMed ID: 12352458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadband excitation for short-time impedance spectroscopy.
    Min M; Pliquett U; Nacke T; Barthel A; Annus P; Land R
    Physiol Meas; 2008 Jun; 29(6):S185-92. PubMed ID: 18544807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical impedance spectroscopy of the cervix in non-pregnant and pregnant women.
    Gandhi SV; Walker D; Milnes P; Mukherjee S; Brown BH; Anumba DO
    Eur J Obstet Gynecol Reprod Biol; 2006 Dec; 129(2):145-9. PubMed ID: 16517044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some early results related to electrical impedance of normal and abnormal gastric tissue.
    Keshtkar A; Salehnia Z; Somi MH; Eftekharsadat AT
    Phys Med; 2012 Jan; 28(1):19-24. PubMed ID: 21334938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.