BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19006275)

  • 1. Interaction between glycine/glycine radicals and intrinsic/boron-doped (8,0) single-walled carbon nanotubes: a density functional theory study.
    Sun W; Bu Y; Wang Y
    J Phys Chem B; 2008 Dec; 112(48):15442-9. PubMed ID: 19006275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of substitutionally boron-doped single-walled semiconducting zigzag carbon nanotubes on ammonia adsorption.
    Vikramaditya T; Sumithra K
    J Comput Chem; 2014 Mar; 35(7):586-94. PubMed ID: 24395720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron-doped carbon nanotubes serving as a novel chemical sensor for formaldehyde.
    Wang R; Zhang D; Zhang Y; Liu C
    J Phys Chem B; 2006 Sep; 110(37):18267-71. PubMed ID: 16970445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic properties and gas adsorption behaviour of pristine, silicon-, and boron-doped (8, 0) single-walled carbon nanotube: A first principles study.
    Azam MA; Alias FM; Tack LW; Seman RNAR; Taib MFM
    J Mol Graph Model; 2017 Aug; 75():85-93. PubMed ID: 28531817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional investigation of hydrogen gas adsorption on Fe-doped pristine and Stone-Wales defected single-walled carbon nanotubes.
    Tabtimsai C; Keawwangchai S; Nunthaboot N; Ruangpornvisuti V; Wanno B
    J Mol Model; 2012 Aug; 18(8):3941-9. PubMed ID: 22431225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular insight into adsorption affinities of Carmustine drug on boron and nitrogen doped functionalized single-walled carbon nanotubes using density functional theory including dispersion correction calculations and molecular dynamics simulation.
    Khorrampour R; Raissi H
    J Biomol Struct Dyn; 2020 Oct; 38(16):4817-4826. PubMed ID: 31709932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT study of zigzag (n, 0) single-walled carbon nanotubes: (13)C NMR chemical shifts.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    J Mol Graph Model; 2016 Jun; 67():14-9. PubMed ID: 27155813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine-mediated B-B bond cleavage of tetrahydroxydiboron to synthesize n-doped SWCNTs with long-term air stability.
    Tanaka N; Hamasuna A; Yamaguchi I; Kato K; Fujigaya T
    Sci Rep; 2023 Dec; 13(1):21926. PubMed ID: 38081981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A DFT study on the interaction between glycine molecules/radicals and the (8, 0) SiCNT.
    Gao K; Chen G; Wu D
    Phys Chem Chem Phys; 2014 Sep; 16(33):17988-97. PubMed ID: 25051227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction investigation of single and multiple carbon monoxide molecules with Fe-, Ru-, and Os-doped single-walled carbon nanotubes by DFT study: applications to gas adsorption and detection nanomaterials.
    Tabtimsai C; Rakrai W; Phalinyot S; Wanno B
    J Mol Model; 2020 Jun; 26(7):186. PubMed ID: 32607821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon doped boron phosphide nanotubes: a computational study.
    Mirzaei M
    J Mol Model; 2011 Jan; 17(1):89-96. PubMed ID: 20379754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel chemical sensor for cyanides: boron-doped carbon nanotubes.
    Zhang Y; Zhang D; Liu C
    J Phys Chem B; 2006 Mar; 110(10):4671-4. PubMed ID: 16526700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of boron nitride impurities on the elastic properties of carbon nanotubes.
    Yuan J; Liew KM
    Nanotechnology; 2008 Nov; 19(44):445703. PubMed ID: 21832745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic studies on covalent functionalization of single-walled carbon nanotubes with glycine.
    Deborah M; Jawahar A; Mathavan T; Kumara Dhas M; Benial AM
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; ():. PubMed ID: 25448929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycine interaction with carbon nanotubes: an ab initio study.
    Mavrandonakis A; Farantos SC; Froudakis GE
    J Phys Chem B; 2006 Mar; 110(12):6048-50. PubMed ID: 16553415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?
    Chen Y; Wang HX; Zhao JX; Cai QH; Wang XG; Wang XZ
    J Mol Model; 2012 Jul; 18(7):3415-25. PubMed ID: 22271098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical properties and far infrared optical conductivity of boron-doped single-walled carbon nanotube films.
    Liu XM; Gutiérrez HR; Eklund PC
    J Phys Condens Matter; 2010 Aug; 22(33):334213. PubMed ID: 21386503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of nucleic acid bases and amino acids on single-walled carbon and boron nitride nanotubes: a first-principles study.
    Zheng J; Song W; Wang L; Lu J; Luo G; Zhou J; Qin R; Li H; Gao Z; Lai L; Li G; Mei WN
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6376-80. PubMed ID: 19908537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of boron doping on the electrical conductivity of metallicity-separated single walled carbon nanotubes.
    Fujisawa K; Hayashi T; Endo M; Terrones M; Kim JH; Kim YA
    Nanoscale; 2018 Jul; 10(26):12723-12733. PubMed ID: 29946630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic properties and reactivity of Pt-doped carbon nanotubes.
    Tian WQ; Liu LV; Wang YA
    Phys Chem Chem Phys; 2006 Aug; 8(30):3528-39. PubMed ID: 16871342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.