These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19006275)

  • 21. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation.
    Ali S; Fu Liu T; Lian Z; Li B; Sheng Su D
    Phys Chem Chem Phys; 2017 Aug; 19(33):22344-22354. PubMed ID: 28805223
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen adsorption on carbon-doped boron nitride nanotube.
    Baierle RJ; Piquini P; Schmidt TM; Fazzio A
    J Phys Chem B; 2006 Oct; 110(42):21184-8. PubMed ID: 17048943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon and boron nanotubes as a template material for adsorption of 6-Thioguanine chemotherapeutic: a molecular dynamics and density functional approach.
    Hasanzade Z; Raissi H
    J Biomol Struct Dyn; 2020 Feb; 38(3):697-707. PubMed ID: 30900530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the effect of confinement on water clusters in carbon nanotubes.
    Liu J; Feng L; Wang X; Zhao M
    J Mol Model; 2017 Apr; 23(4):133. PubMed ID: 28341994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Dynamics of Chirality Definable Growth of Single-Walled Carbon Nanotubes.
    Yoshikawa R; Hisama K; Ukai H; Takagi Y; Inoue T; Chiashi S; Maruyama S
    ACS Nano; 2019 Jun; 13(6):6506-6512. PubMed ID: 31117374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.
    Ahadi Z; Shadman M; Yeganegi S; Asgari F
    J Mol Model; 2012 Jul; 18(7):2981-91. PubMed ID: 22160758
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Band gap opening and semiconductor-metal phase transition in (n, n) single-walled carbon nanotubes with distinctive boron-nitrogen line defect.
    Qiu M; Xie Y; Gao X; Li J; Deng Y; Guan D; Ma L; Yuan C
    Phys Chem Chem Phys; 2016 Feb; 18(6):4643-51. PubMed ID: 26794602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atomic nanotube welders: boron interstitials triggering connections in double-walled carbon nanotubes.
    Endo M; Muramatsu H; Hayashi T; Kim YA; Van Lier G; Charlier JC; Terrones H; Terrones M; Dresselhaus MS
    Nano Lett; 2005 Jun; 5(6):1099-105. PubMed ID: 15943450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gas adsorption on the Zn-, Pd- and Os-doped armchair (5,5) single-walled carbon nanotubes.
    Tabtimsai C; Keawwangchai S; Wanno B; Ruangpornvisuti V
    J Mol Model; 2012 Jan; 18(1):351-8. PubMed ID: 21523545
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screened exchange hybrid density-functional study of the work function of pristine and doped single-walled carbon nanotubes.
    Barone V; Peralta JE; Uddin J; Scuseria GE
    J Chem Phys; 2006 Jan; 124(2):024709. PubMed ID: 16422628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes.
    Wu X; Yang JL; Zeng XC
    J Chem Phys; 2006 Jul; 125(4):44704. PubMed ID: 16942171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes.
    Zhao X; Sun S; Yang F; Li Y
    Acc Chem Res; 2022 Dec; 55(23):3334-3344. PubMed ID: 36384282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Thermoelectric Properties of Boron-Substituted Single-Walled Carbon Nanotube Films.
    Chiang WH; Iihara Y; Li WT; Hsieh CY; Lo SC; Goto C; Tani A; Kawai T; Nonoguchi Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7235-7241. PubMed ID: 30556999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical reactivity and adsorption properties of pro-carbazine anti-cancer drug on gallium-doped nanotubes: a quantum chemical study.
    Ghoreishi R; Kia M
    J Mol Model; 2019 Jan; 25(2):46. PubMed ID: 30689092
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electronic structures and three-dimensional effects of boron-doped carbon nanotubes.
    Koretsune T; Saito S
    Sci Technol Adv Mater; 2008 Dec; 9(4):044203. PubMed ID: 27878020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunosuppressive agent leflunomide: a SWNTs-immobilized dihydroortate dehydrogenase inhibitory effect and computational study of its adsorption properties on zigzag single walled (6,0) carbon and boron nitride nanotubes as controlled drug delivery devices.
    Raissi H; Mollania F
    Eur J Pharm Sci; 2014 Jun; 56():37-54. PubMed ID: 24566615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear optical properties of boron doped single-walled carbon nanotubes.
    Anand B; Podila R; Ayala P; Oliveira L; Philip R; Sai SS; Zakhidov AA; Rao AM
    Nanoscale; 2013 Aug; 5(16):7271-6. PubMed ID: 23817830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations.
    Jiang L; Zhu C; Fu Y; Yang G
    J Phys Chem B; 2017 Apr; 121(13):2721-2730. PubMed ID: 28301158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.