These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19006275)

  • 41. Oxygen-Rich Polymer Polyethylene Glycol-Functionalized Single-Walled Carbon Nanotubes Toward Air-Stable n-Type Thermoelectric Materials.
    Wang S; Wu J; Yang F; Xin H; Wang L; Gao C
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26482-26489. PubMed ID: 34033474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly conductive boron nanotubes: transport properties, work functions, and structural stabilities.
    Bezugly V; Kunstmann J; Grundkötter-Stock B; Frauenheim T; Niehaus T; Cuniberti G
    ACS Nano; 2011 Jun; 5(6):4997-5005. PubMed ID: 21528877
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparative analysis of surface electrostatic potentials of carbon, boron/nitrogen and carbon/boron/nitrogen model nanotubes.
    Politzer P; Lane P; Murray JS; Concha MC
    J Mol Model; 2005 Feb; 11(1):1-7. PubMed ID: 15490284
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical insights into the interaction mechanism between proteins and SWCNTs: adsorptions of tripeptides GXG on SWCNTs.
    Wang Y; Ai H
    J Phys Chem B; 2009 Jul; 113(28):9620-7. PubMed ID: 19548664
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption of lanthanide double-decker phthalocyanines on single-walled carbon nanotubes: structural changes and electronic properties as studied by density functional theory.
    Bolívar-Pineda LM; Mendoza-Domínguez CU; Basiuk VA
    J Mol Model; 2023 Apr; 29(5):158. PubMed ID: 37099146
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How Single-Walled Carbon Nanotubes are Transformed into Multiwalled Carbon Nanotubes during Heat Treatment.
    Yoo B; Xu Z; Ding F
    ACS Omega; 2021 Feb; 6(5):4074-4079. PubMed ID: 33585782
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nitrogen- and boron-doped double-walled carbon nanotubes.
    Panchakarla LS; Govindaraj A; Rao CN
    ACS Nano; 2007 Dec; 1(5):494-500. PubMed ID: 19206671
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unraveling the 13C NMR chemical shifts in single-walled carbon nanotubes: dependence on diameter and electronic structure.
    Engtrakul C; Irurzun VM; Gjersing EL; Holt JM; Larsen BA; Resasco DE; Blackburn JL
    J Am Chem Soc; 2012 Mar; 134(10):4850-6. PubMed ID: 22332844
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chemical reaction of nitric oxides with the 5-1DB defect of the single-walled carbon nanotube.
    Liu LV; Tian WQ; Wang YA
    J Phys Chem B; 2006 Feb; 110(5):1999-2005. PubMed ID: 16471775
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substituted carborane-appended water-soluble single-wall carbon nanotubes: new approach to boron neutron capture therapy drug delivery.
    Yinghuai Z; Peng AT; Carpenter K; Maguire JA; Hosmane NS; Takagaki M
    J Am Chem Soc; 2005 Jul; 127(27):9875-80. PubMed ID: 15998093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides.
    Samarajeewa DR; Dieckmann GR; Nielsen SO; Musselman IH
    Nanoscale; 2012 Aug; 4(15):4544-54. PubMed ID: 22699559
    [TBL] [Abstract][Full Text] [Related]  

  • 52. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes.
    Shvedova AA; Kisin ER; Murray AR; Mouithys-Mickalad A; Stadler K; Mason RP; Kadiiska M
    Free Radic Biol Med; 2014 Aug; 73():154-65. PubMed ID: 24863695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functionalization effects of single-walled carbon nanotubes as templates for the synthesis of silica nanorods and study of growing mechanism of silica.
    Lee KG; Wi R; Imran M; Park TJ; Lee J; Lee SY; Kim DH
    ACS Nano; 2010 Jul; 4(7):3933-42. PubMed ID: 20536251
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modeling the Field Emission Enhancement Factor for Capped Carbon Nanotubes Using the Induced Electron Density.
    de Castro CP; de Assis TA; Rivelino R; de B Mota F; de Castilho CMC; Forbes RG
    J Chem Inf Model; 2020 Feb; 60(2):714-721. PubMed ID: 31793777
    [TBL] [Abstract][Full Text] [Related]  

  • 55. N-doped direction-dependent electronic and mechanical properties of single-walled carbon nanotube (SWCNT) from a first-principles density functional theory (DFT) and MD-simulation.
    Singh YT; Patra PK; Obodo KO; Saad H-E MM; Rai DP
    J Mol Graph Model; 2022 Mar; 111():108111. PubMed ID: 34953321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Insertion of C50 into single-walled carbon nanotubes: Selectivity in interwall spacing and C50 isomers.
    Zhou Z; Zhao J; Schleyer Pv; Chen Z
    J Comput Chem; 2008 Apr; 29(5):781-7. PubMed ID: 17876758
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interacting quasi-two-dimensional sheets of interlinked carbon nanotubes: a high-pressure phase of carbon.
    Saxena S; Tyson TA
    ACS Nano; 2010 Jun; 4(6):3515-21. PubMed ID: 20446666
    [TBL] [Abstract][Full Text] [Related]  

  • 58. First-principles study of ZnO cluster-decorated carbon nanotubes.
    Chai GL; Lin CS; Cheng WD
    Nanotechnology; 2011 Nov; 22(44):445705. PubMed ID: 21983431
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Light-Induced Sulfur Transport inside Single-Walled Carbon Nanotubes.
    Sedelnikova OV; Gurova OA; Makarova AA; Fedorenko AD; Nikolenko AD; Plyusnin PE; Arenal R; Bulusheva LG; Okotrub AV
    Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32344811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization.
    Shiraki T; Miyauchi Y; Matsuda K; Nakashima N
    Acc Chem Res; 2020 Sep; 53(9):1846-1859. PubMed ID: 32791829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.