BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 19006385)

  • 1. Proton-coupled electron-transfer oxidation of phenols by hexachloroiridate(IV).
    Song N; Stanbury DM
    Inorg Chem; 2008 Dec; 47(24):11458-60. PubMed ID: 19006385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic effects of hydrogen bonds on proton-coupled electron transfer from phenols.
    Sjödin M; Irebo T; Utas JE; Lind J; Merényi G; Akermark B; Hammarström L
    J Am Chem Soc; 2006 Oct; 128(40):13076-83. PubMed ID: 17017787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant properties of phenols.
    Foti MC
    J Pharm Pharmacol; 2007 Dec; 59(12):1673-85. PubMed ID: 18053330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridine as proton acceptor in the concerted proton electron transfer oxidation of phenol.
    Bonin J; Costentin C; Robert M; Savéant JM
    Org Biomol Chem; 2011 Jun; 9(11):4064-9. PubMed ID: 21499600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-electron oxidation of a hydrogen-bonded phenol occurs by concerted proton-coupled electron transfer.
    Rhile IJ; Mayer JM
    J Am Chem Soc; 2004 Oct; 126(40):12718-9. PubMed ID: 15469234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for concerted proton-electron transfer in the electrochemical oxidation of phenols with water as proton acceptor. Tri-tert-butylphenol.
    Costentin C; Louault C; Robert M; Savéant JM
    J Am Chem Soc; 2008 Nov; 130(47):15817-9. PubMed ID: 18975863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching the redox mechanism: models for proton-coupled electron transfer from tyrosine and tryptophan.
    Sjödin M; Styring S; Wolpher H; Xu Y; Sun L; Hammarström L
    J Am Chem Soc; 2005 Mar; 127(11):3855-63. PubMed ID: 15771521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rate ladder of proton-coupled tyrosine oxidation in water: a systematic dependence on hydrogen bonds and protonation state.
    Irebo T; Johansson O; Hammarström L
    J Am Chem Soc; 2008 Jul; 130(29):9194-5. PubMed ID: 18582051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concerted proton-electron transfers. Consistency between electrochemical kinetics and their homogeneous counterparts.
    Costentin C; Hajj V; Louault C; Robert M; Savéant JM
    J Am Chem Soc; 2011 Nov; 133(47):19160-7. PubMed ID: 22067039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton-coupled electron transfer in a model for tyrosine oxidation in photosystem II.
    Carra C; Iordanova N; Hammes-Schiffer S
    J Am Chem Soc; 2003 Aug; 125(34):10429-36. PubMed ID: 12926968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms.
    Skone JH; Soudackov AV; Hammes-Schiffer S
    J Am Chem Soc; 2006 Dec; 128(51):16655-63. PubMed ID: 17177415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton-coupled electron transfer from tryptophan: a concerted mechanism with water as proton acceptor.
    Zhang MT; Hammarström L
    J Am Chem Soc; 2011 Jun; 133(23):8806-9. PubMed ID: 21500853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the environmental degradation of water contaminants. Kinetics and mechanism of the riboflavin-sensitised-photooxidation of phenolic compounds.
    Haggi E; Bertolotti S; García NA
    Chemosphere; 2004 Jun; 55(11):1501-7. PubMed ID: 15099730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent effects on the rates and mechanisms of reaction of phenols with free radicals.
    Litwinienko G; Ingold KU
    Acc Chem Res; 2007 Mar; 40(3):222-30. PubMed ID: 17370994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proton-coupled electron transfer and tyrosine D of photosystem II.
    Jenson DL; Evans A; Barry BA
    J Phys Chem B; 2007 Nov; 111(43):12599-604. PubMed ID: 17924690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.
    Klein E; Lukes V
    J Phys Chem A; 2006 Nov; 110(44):12312-20. PubMed ID: 17078630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overoxidation of phenol by hexachloroiridate(IV).
    Song N; Stanbury DM
    Inorg Chem; 2011 Dec; 50(24):12762-73. PubMed ID: 22087767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation of the relative acidities and oxidation potentials of para-substituted phenols. A model for alpha-tocopherol in solution.
    Singh NK; Shaik MS; O'Malley PJ; Popelier PL
    Org Biomol Chem; 2007 Jun; 5(11):1739-43. PubMed ID: 17520142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling factors in the rates of oxidation of anilines and phenols by triplet methylene blue in aqueous solution.
    Erickson PR; Walpen N; Guerard JJ; Eustis SN; Arey JS; McNeill K
    J Phys Chem A; 2015 Apr; 119(13):3233-43. PubMed ID: 25742158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic isotope effect and extended pH-dependent studies of the oxidation of hydroxylamine by hexachloroiridate(IV): ET and PCET.
    Makarycheva-Mikhailova AV; Stanbury DM; McKee ML
    J Phys Chem B; 2007 Jun; 111(24):6942-8. PubMed ID: 17388557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.