BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19006815)

  • 1. Ribosome biogenesis; the KsgA protein throws a methyl-mediated switch in ribosome assembly.
    Mangat CS; Brown ED
    Mol Microbiol; 2008 Dec; 70(5):1051-3. PubMed ID: 19006815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insight into the ribosome biogenesis functions of the ancient protein KsgA.
    Connolly K; Rife JP; Culver G
    Mol Microbiol; 2008 Dec; 70(5):1062-75. PubMed ID: 18990185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific mutation of the conserved m6(2)A m6(2)A residues of E. coli 16S ribosomal RNA. Effects on ribosome function and activity of the ksgA methyltransferase.
    Cunningham PR; Weitzmann CJ; Nurse K; Masurel R; Van Knippenberg PH; Ofengand J
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):18-26. PubMed ID: 2207142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.
    Boehringer D; O'Farrell HC; Rife JP; Ban N
    J Biol Chem; 2012 Mar; 287(13):10453-10459. PubMed ID: 22308031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of 16S ribosomal RNA by the KsgA methyltransferase restructures the 30S subunit to optimize ribosome function.
    Demirci H; Murphy F; Belardinelli R; Kelley AC; Ramakrishnan V; Gregory ST; Dahlberg AE; Jogl G
    RNA; 2010 Dec; 16(12):2319-24. PubMed ID: 20962038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutants of 16S rRNA reveal important RNA domains for KsgA function and 30S subunit assembly.
    Desai PM; Culver GM; Rife JP
    Biochemistry; 2011 Feb; 50(5):854-63. PubMed ID: 21142019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Staphylococcus aureus and Escherichia coli have disparate dependences on KsgA for growth and ribosome biogenesis.
    O'Farrell HC; Rife JP
    BMC Microbiol; 2012 Oct; 12():244. PubMed ID: 23095113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation of the conserved A1518-A1519 in Escherichia coli 16S ribosomal RNA by the ksgA methyltransferase is influenced by methylations around the similarly conserved U1512.G1523 base pair in the 3' terminal hairpin.
    Formenoy LJ; Cunningham PR; Nurse K; Pleij CW; Ofengand J
    Biochimie; 1994; 76(12):1123-8. PubMed ID: 7538324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstitution of 30S ribosomal subunits in vitro using ribosome biogenesis factors.
    Tamaru D; Amikura K; Shimizu Y; Nierhaus KH; Ueda T
    RNA; 2018 Nov; 24(11):1512-1519. PubMed ID: 30076205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved rRNA methyltransferase regulates ribosome biogenesis.
    Xu Z; O'Farrell HC; Rife JP; Culver GM
    Nat Struct Mol Biol; 2008 May; 15(5):534-6. PubMed ID: 18391965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of RbfA in the absence of the KsgA checkpoint results in impaired translation initiation.
    Connolly K; Culver G
    Mol Microbiol; 2013 Mar; 87(5):968-81. PubMed ID: 23387871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a Plasmodium falciparum rRNA methyltransferase.
    Gupta K; Gupta A; Habib S
    Mol Biochem Parasitol; 2018 Jul; 223():13-18. PubMed ID: 29909066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of successive adenosine modifications by the conserved ribosomal methyltransferase KsgA.
    Stephan NC; Ries AB; Boehringer D; Ban N
    Nucleic Acids Res; 2021 Jun; 49(11):6389-6398. PubMed ID: 34086932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A paradigm for local conformational control of function in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases.
    Weitzmann C; Tumminia SJ; Boublik M; Ofengand J
    Nucleic Acids Res; 1991 Dec; 19(25):7089-95. PubMed ID: 1766869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of substrate specificity by a single active site residue of the KsgA methyltransferase.
    O'Farrell HC; Musayev FN; Scarsdale JN; Rife JP
    Biochemistry; 2012 Jan; 51(1):466-74. PubMed ID: 22142337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE.
    Basturea GN; Deutscher MP
    RNA; 2007 Nov; 13(11):1969-76. PubMed ID: 17872509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 16S rRNA methyltransferase KsgA contributes to oxidative stress resistance and virulence in Staphylococcus aureus.
    Kyuma T; Kizaki H; Ryuno H; Sekimizu K; Kaito C
    Biochimie; 2015 Dec; 119():166-74. PubMed ID: 26545800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the conserved bases C1402 and A1500 in the center of the decoding domain of Escherichia coli 16 S rRNA reveals an important tertiary interaction.
    Vila-Sanjurjo A; Dahlberg AE
    J Mol Biol; 2001 May; 308(3):457-63. PubMed ID: 11327780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What do we know about ribosomal RNA methylation in Escherichia coli?
    Sergeeva OV; Bogdanov AA; Sergiev PV
    Biochimie; 2015 Oct; 117():110-8. PubMed ID: 25511423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea.
    Knüppel R; Trahan C; Kern M; Wagner A; Grünberger F; Hausner W; Quax TEF; Albers SV; Oeffinger M; Ferreira-Cerca S
    Nucleic Acids Res; 2021 Feb; 49(3):1662-1687. PubMed ID: 33434266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.