These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19007319)

  • 41. Contributions of the D-serine pathway to schizophrenia.
    Labrie V; Wong AH; Roder JC
    Neuropharmacology; 2012 Mar; 62(3):1484-503. PubMed ID: 21295046
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Evidence on the key role of the metabotrobic glutamatergic receptors in the pathogenesis of schizophrenia: a "breakthrough" in pharmacological treatment].
    Pannese R; Minichino A; Pignatelli M; Delle Chiaie R; Biondi M; Nicoletti F
    Riv Psichiatr; 2012; 47(2):149-69. PubMed ID: 22622251
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiprobe molecular imaging of an NMDA receptor hypofunction rat model for glutamatergic dysfunction.
    Kosten L; Verhaeghe J; Verkerk R; Thomae D; De Picker L; Wyffels L; Van Eetveldt A; Dedeurwaerdere S; Stroobants S; Staelens S
    Psychiatry Res Neuroimaging; 2016 Feb; 248():1-11. PubMed ID: 26803479
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine].
    Mechri A; Saoud M; Khiari G; d'Amato T; Dalery J; Gaha L
    Encephale; 2001; 27(1):53-9. PubMed ID: 11294039
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity.
    Ballard TM; Pauly-Evers M; Higgins GA; Ouagazzal AM; Mutel V; Borroni E; Kemp JA; Bluethmann H; Kew JN
    J Neurosci; 2002 Aug; 22(15):6713-23. PubMed ID: 12151550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycine transporter-1: a new potential therapeutic target for schizophrenia.
    Hashimoto K
    Curr Pharm Des; 2011; 17(2):112-20. PubMed ID: 21355838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications.
    Gaspar PA; Bustamante ML; Silva H; Aboitiz F
    J Neurochem; 2009 Nov; 111(4):891-900. PubMed ID: 19686383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modulation of NMDA receptor function as a treatment for schizophrenia.
    Cioffi CL
    Bioorg Med Chem Lett; 2013 Sep; 23(18):5034-44. PubMed ID: 23916256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Schizophrenia: from dopaminergic to glutamatergic interventions.
    Laruelle M
    Curr Opin Pharmacol; 2014 Feb; 14():97-102. PubMed ID: 24524997
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of group I metabotropic glutamate receptors in schizophrenia.
    Pietraszek M; Nagel J; Gravius A; Schäfer D; Danysz W
    Amino Acids; 2007 Feb; 32(2):173-8. PubMed ID: 16699816
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Significance of dysfunctional glutamatergic transmission for the development of psychotic symptoms.
    Pietraszek M
    Pol J Pharmacol; 2003; 55(2):133-54. PubMed ID: 12926541
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs.
    Homayoun H; Moghaddam B
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):18041-6. PubMed ID: 19004793
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Targeting metabotropic glutamate receptors to develop novel antipsychotics].
    Chaki S; Yoshida S; Okuyama S
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2010 Nov; 30(5-6):207-13. PubMed ID: 21226317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The acute effects of NMDA antagonism: from the rodent to the human brain.
    Gunduz-Bruce H
    Brain Res Rev; 2009 May; 60(2):279-86. PubMed ID: 18703087
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Substance use disorders and Schizophrenia: a question of shared glutamatergic mechanisms.
    Coyle JT
    Neurotox Res; 2006 Dec; 10(3-4):221-33. PubMed ID: 17197372
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glutamate as a therapeutic target in psychiatric disorders.
    Javitt DC
    Mol Psychiatry; 2004 Nov; 9(11):984-97, 979. PubMed ID: 15278097
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology.
    Paz RD; Tardito S; Atzori M; Tseng KY
    Eur Neuropsychopharmacol; 2008 Nov; 18(11):773-86. PubMed ID: 18650071
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glutamate agonist activity: implications for antipsychotic drug action and schizophrenia.
    Banerjee SP; Zuck LG; Yablonsky-Alter E; Lidsky TI
    Neuroreport; 1995 Dec; 6(18):2500-4. PubMed ID: 8741750
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Changes in plasma D-serine, L-serine, and glycine levels in treatment-resistant schizophrenia before and after clozapine treatment.
    Yamamori H; Hashimoto R; Fujita Y; Numata S; Yasuda Y; Fujimoto M; Ohi K; Umeda-Yano S; Ito A; Ohmori T; Hashimoto K; Takeda M
    Neurosci Lett; 2014 Oct; 582():93-8. PubMed ID: 25218715
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A revised excitotoxic hypothesis of schizophrenia: therapeutic implications.
    Deutsch SI; Rosse RB; Schwartz BL; Mastropaolo J
    Clin Neuropharmacol; 2001; 24(1):43-9. PubMed ID: 11290881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.