BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 19007420)

  • 21. Combinatorial modulation of galP and glk gene expression for improved alternative glucose utilization.
    Lu J; Tang J; Liu Y; Zhu X; Zhang T; Zhang X
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2455-62. PubMed ID: 22159736
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.
    Partridge JD; Bodenmiller DM; Humphrys MS; Spiro S
    Mol Microbiol; 2009 Aug; 73(4):680-94. PubMed ID: 19656291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nickel homeostasis in Escherichia coli - the rcnR-rcnA efflux pathway and its linkage to NikR function.
    Iwig JS; Rowe JL; Chivers PT
    Mol Microbiol; 2006 Oct; 62(1):252-62. PubMed ID: 16956381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The linker sequence, joining the DNA-binding domain of the homologous transcription factors, Mlc and NagC, to the rest of the protein, determines the specificity of their DNA target recognition in Escherichia coli.
    Bréchemier-Baey D; Domínguez-Ramírez L; Plumbridge J
    Mol Microbiol; 2012 Sep; 85(5):1007-19. PubMed ID: 22788997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-ordinated regulation of amino sugar biosynthesis and degradation: the NagC repressor acts as both an activator and a repressor for the transcription of the glmUS operon and requires two separated NagC binding sites.
    Plumbridge J
    EMBO J; 1995 Aug; 14(16):3958-65. PubMed ID: 7545108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli.
    Cerca N; Jefferson KK
    FEMS Microbiol Lett; 2008 Jun; 283(1):36-41. PubMed ID: 18445167
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gal repressor-operator-HU ternary complex: pathway of repressosome formation.
    Roy S; Dimitriadis EK; Kar S; Geanacopoulos M; Lewis MS; Adhya S
    Biochemistry; 2005 Apr; 44(14):5373-80. PubMed ID: 15807530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations.
    Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J
    J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of the expression of the manXYZ operon in Escherichia coli: Mlc is a negative regulator of the mannose PTS.
    Plumbridge J
    Mol Microbiol; 1998 Jan; 27(2):369-80. PubMed ID: 9484892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The yicJI metabolic operon of Escherichia coli is involved in bacterial fitness.
    Répérant M; Porcheron G; Rouquet G; Gilot P
    FEMS Microbiol Lett; 2011 Jun; 319(2):180-6. PubMed ID: 21477255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR.
    Patching SG; Psakis G; Baldwin SA; Baldwin J; Henderson PJ; Middleton DA
    Mol Membr Biol; 2008 Sep; 25(6-7):474-84. PubMed ID: 18798051
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered oligomerization properties of N316 mutants of Escherichia coli TyrR.
    Koyanagi T; Katayama T; Suzuki H; Kumagai H
    J Bacteriol; 2008 Dec; 190(24):8238-43. PubMed ID: 18931124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signal integration in the galactose network of Escherichia coli.
    Semsey S; Krishna S; Sneppen K; Adhya S
    Mol Microbiol; 2007 Jul; 65(2):465-76. PubMed ID: 17630975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of transcription of gal repressor and isorepressor genes in Escherichia coli.
    Weickert MJ; Adhya S
    J Bacteriol; 1993 Jan; 175(1):251-8. PubMed ID: 8416900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Parallel experimental evolution reveals a novel repressive control of GalP on xylose fermentation in Escherichia coli.
    Kurgan G; Sievert C; Flores A; Schneider A; Billings T; Panyon L; Morris C; Taylor E; Kurgan L; Cartwright R; Wang X
    Biotechnol Bioeng; 2019 Aug; 116(8):2074-2086. PubMed ID: 31038200
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Repression and induction of the nag regulon of Escherichia coli K-12: the roles of nagC and nagA in maintenance of the uninduced state.
    Plumbridge JA
    Mol Microbiol; 1991 Aug; 5(8):2053-62. PubMed ID: 1766379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Operator-bound GalR dimers close DNA loops by direct interaction: tetramerization and inducer binding.
    Semsey S; Geanacopoulos M; Lewis DE; Adhya S
    EMBO J; 2002 Aug; 21(16):4349-56. PubMed ID: 12169637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Operator recognition by the ROK transcription factor family members, NagC and Mlc.
    Bréchemier-Baey D; Domínguez-Ramírez L; Oberto J; Plumbridge J
    Nucleic Acids Res; 2015 Jan; 43(1):361-72. PubMed ID: 25452338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ArgR-dependent repression of arginine and histidine transport genes in Escherichia coli K-12.
    Caldara M; Minh PN; Bostoen S; Massant J; Charlier D
    J Mol Biol; 2007 Oct; 373(2):251-67. PubMed ID: 17850814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity.
    Overgaard M; Borch J; Jørgensen MG; Gerdes K
    Mol Microbiol; 2008 Aug; 69(4):841-57. PubMed ID: 18532983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.