These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 19007932)

  • 21. Comparison of 2 femoral tunnel locations in anatomic single-bundle anterior cruciate ligament reconstruction: a biomechanical study.
    Driscoll MD; Isabell GP; Conditt MA; Ismaily SK; Jupiter DC; Noble PC; Lowe WR
    Arthroscopy; 2012 Oct; 28(10):1481-9. PubMed ID: 22796141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of the anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior tibial translation and internal rotation.
    Zantop T; Herbort M; Raschke MJ; Fu FH; Petersen W
    Am J Sports Med; 2007 Feb; 35(2):223-7. PubMed ID: 17158275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osteochondral microdamage from valgus bending of the human knee.
    Meyer EG; Villwock MR; Haut RC
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):577-82. PubMed ID: 19505750
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of noncontact anterior cruciate ligament injury.
    Shimokochi Y; Shultz SJ
    J Athl Train; 2008; 43(4):396-408. PubMed ID: 18668173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human hip and knee torque accommodations to anterior cruciate ligament dysfunction.
    Osternig LR; Ferber R; Mercer J; Davis H
    Eur J Appl Physiol; 2000 Sep; 83(1):71-6. PubMed ID: 11072776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Restrained tibial rotation may prevent ACL injury during landing at different flexion angles.
    Mokhtarzadeh H; Ng A; Yeow CH; Oetomo D; Malekipour F; Lee PV
    Knee; 2015 Jan; 22(1):24-9. PubMed ID: 25456655
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact.
    Yeow CH; Lee PV; Goh JC
    J Biomech; 2010 Jan; 43(2):242-7. PubMed ID: 19863961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinematics of anterior cruciate ligament ruptures in World Cup alpine skiing: 2 case reports of the slip-catch mechanism.
    Bere T; Mok KM; Koga H; Krosshaug T; Nordsletten L; Bahr R
    Am J Sports Med; 2013 May; 41(5):1067-73. PubMed ID: 23449837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting.
    McLean SG; Huang X; Su A; Van Den Bogert AJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):828-38. PubMed ID: 15342155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of the material property change of anterior cruciate ligament by ageing on joint kinematics and biomechanics under tibial varus/valgus torques.
    Wan C; Hao ZX; Wen SZ
    Biomed Mater Eng; 2014; 24(1):1375-82. PubMed ID: 24212034
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loading mechanisms of the anterior cruciate ligament.
    Beaulieu ML; Ashton-Miller JA; Wojtys EM
    Sports Biomech; 2023 Jan; 22(1):1-29. PubMed ID: 33957846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Valgus medial collateral ligament rupture causes concomitant loading and damage of the anterior cruciate ligament.
    Mazzocca AD; Nissen CW; Geary M; Adams DJ
    J Knee Surg; 2003 Jul; 16(3):148-51. PubMed ID: 12943283
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical Characterization of a Model of Noninvasive, Traumatic Anterior Cruciate Ligament Injury in the Rat.
    Maerz T; Kurdziel MD; Davidson AA; Baker KC; Anderson K; Matthew HW
    Ann Biomed Eng; 2015 Oct; 43(10):2467-76. PubMed ID: 25777293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology.
    Kanamori A; Woo SL; Ma CB; Zeminski J; Rudy TW; Li G; Livesay GA
    Arthroscopy; 2000 Sep; 16(6):633-9. PubMed ID: 10976125
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle.
    Markolf KL; Jackson SR; Foster B; McAllister DR
    J Orthop Res; 2014 Jan; 32(1):89-95. PubMed ID: 23996893
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional knee joint movements during a step-up: evaluation after anterior cruciate ligament rupture.
    Jonsson H; Kärrholm J
    J Orthop Res; 1994 Nov; 12(6):769-79. PubMed ID: 7983552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of the end-to-end distances between the femoral and tibial insertion sites of the anterior cruciate ligament during knee flexion and with rotational torque.
    Wang JH; Kato Y; Ingham SJ; Maeyama A; Linde-Rosen M; Smolinski P; Fu FH
    Arthroscopy; 2012 Oct; 28(10):1524-32. PubMed ID: 22717210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passive anterior tibial subluxation in anterior cruciate ligament-deficient knees.
    Tanaka MJ; Jones KJ; Gargiulo AM; Delos D; Wickiewicz TL; Potter HG; Pearle AD
    Am J Sports Med; 2013 Oct; 41(10):2347-52. PubMed ID: 23928320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anterolateral rotational knee instability: role of posterolateral structures. Winner of the AGA-DonJoy Award 2006.
    Zantop T; Schumacher T; Diermann N; Schanz S; Raschke MJ; Petersen W
    Arch Orthop Trauma Surg; 2007 Nov; 127(9):743-52. PubMed ID: 17072626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation.
    Li G; Papannagari R; DeFrate LE; Yoo JD; Park SE; Gill TJ
    Acta Orthop; 2007 Jun; 78(3):355-60. PubMed ID: 17611849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.