BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 19007947)

  • 1. Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures.
    Yin Y; Matsui A; Sakuta M; Ashihara H
    Phytochemistry; 2008 Dec; 69(17):2891-8. PubMed ID: 19007947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic fate of nicotinamide in higher plants.
    Matsui A; Yin Y; Yamanaka K; Iwasaki M; Ashihara H
    Physiol Plant; 2007 Oct; 131(2):191-200. PubMed ID: 18251891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Metabolism of nicotinic acid in plant cell suspension cultures, III: Formation and metabolism of trigonelline (author's transl)].
    Heeger V; Leienbach KW; Barz W
    Hoppe Seylers Z Physiol Chem; 1976 Aug; 357(8):1081-7. PubMed ID: 185134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.).
    Katahira R; Ashihara H
    Planta; 2009 Dec; 231(1):35-45. PubMed ID: 19820966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds.
    Zheng XQ; Hayashibe E; Ashihara H
    J Exp Bot; 2005 Jun; 56(416):1615-23. PubMed ID: 15837705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis.
    Wang G; Pichersky E
    Plant J; 2007 Mar; 49(6):1020-9. PubMed ID: 17335512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesizing and salvaging NAD: lessons learned from Chlamydomonas reinhardtii.
    Lin H; Kwan AL; Dutcher SK
    PLoS Genet; 2010 Sep; 6(9):e1001105. PubMed ID: 20838591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism.
    Ashihara H; Deng WW
    J Plant Res; 2012 Nov; 125(6):781-91. PubMed ID: 22527843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the formation of nicotinic acid conjugates in leaves of different plant species.
    Ashihara H; Yin Y; Katahira R; Watanabe S; Mimura T; Sasamoto H
    Plant Physiol Biochem; 2012 Nov; 60():190-5. PubMed ID: 22983143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridine metabolism and trigonelline synthesis in leaves of the mangrove legume trees Derris indica (Millettia pinnata) and Caesalpinia crista.
    Yin Y; Sasamoto H; Ashihara H
    Nat Prod Commun; 2011 Dec; 6(12):1835-8. PubMed ID: 22312719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Hydroxyisoflavanone dehydratase is a critical determinant of isoflavone productivity in hairy root cultures of Lotus japonicus.
    Shimamura M; Akashi T; Sakurai N; Suzuki H; Saito K; Shibata D; Ayabe S; Aoki T
    Plant Cell Physiol; 2007 Nov; 48(11):1652-7. PubMed ID: 17921150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyridine salvage and nicotinic acid conjugate synthesis in leaves of mangrove species.
    Ashihara H; Yin Y; Deng WW; Watanabe S
    Phytochemistry; 2010 Jan; 71(1):47-53. PubMed ID: 19913262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis.
    Brickman TJ; Suhadolc RJ; McKelvey PJ; Armstrong SK
    Mol Microbiol; 2017 Feb; 103(3):423-438. PubMed ID: 27783449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quinolinate salvage and insights for targeting NAD biosynthesis in group A streptococci.
    Sorci L; Blaby IK; Rodionova IA; De Ingeniis J; Tkachenko S; de Crécy-Lagard V; Osterman AL
    J Bacteriol; 2013 Feb; 195(4):726-32. PubMed ID: 23204464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymology of NAD+ synthesis.
    Magni G; Amici A; Emanuelli M; Raffaelli N; Ruggieri S
    Adv Enzymol Relat Areas Mol Biol; 1999; 73():135-82, xi. PubMed ID: 10218108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicotinamidase modulation of NAD+ biosynthesis and nicotinamide levels separately affect reproductive development and cell survival in C. elegans.
    Vrablik TL; Huang L; Lange SE; Hanna-Rose W
    Development; 2009 Nov; 136(21):3637-46. PubMed ID: 19820182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus.
    Grønlund M; Roussis A; Flemetakis E; Quaedvlieg NE; Schlaman HR; Umehara Y; Katinakis P; Stougaard J; Spaink HP
    Mol Plant Microbe Interact; 2005 May; 18(5):414-27. PubMed ID: 15915640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction and spatial organization of polyamine biosynthesis during nodule development in Lotus japonicus.
    Flemetakis E; Efrose RC; Desbrosses G; Dimou M; Delis C; Aivalakis G; Udvardi MK; Katinakis P
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1283-93. PubMed ID: 15597734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings.
    Zheng XQ; Matsui A; Ashihara H
    Phytochemistry; 2008 Jan; 69(2):390-5. PubMed ID: 17888466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Key Enzyme of the NAD
    Taniguchi H; Sungwallek S; Chotchuang P; Okano K; Honda K
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.