BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19008034)

  • 1. Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading.
    Rao NS; Easton ZM; Schneiderman EM; Zion MS; Lee DR; Steenhuis TS
    J Environ Manage; 2009 Mar; 90(3):1385-95. PubMed ID: 19008034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined monitoring and modeling indicate the most effective agricultural best management practices.
    Easton ZM; Walter MT; Steenhuis TS
    J Environ Qual; 2008; 37(5):1798-809. PubMed ID: 18689741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economic analysis of best management practices to reduce watershed phosphorus losses.
    Rao NS; Easton ZM; Lee DR; Steenhuis TS
    J Environ Qual; 2012; 41(3):855-64. PubMed ID: 22565267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate analysis of paired watershed data to evaluate agricultural best management practice effects on stream water phosphorus.
    Bishop PL; Hively WD; Stedinger JR; Rafferty MR; Lojpersberger JL; Bloomfield JA
    J Environ Qual; 2005; 34(3):1087-101. PubMed ID: 15888895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff.
    Zhang X; Zhang M
    Sci Total Environ; 2011 Apr; 409(10):1949-58. PubMed ID: 21377192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydrodynamically rough grassed waterways on dissolved reactive phosphorus loads coming from agricultural watersheds.
    Fiener P; Auerswald K
    J Environ Qual; 2009; 38(2):548-59. PubMed ID: 19202025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating agricultural best management practices in tile-drained subwatersheds of the Mackinaw River, Illinois.
    Lemke AM; Kirkham KG; Lindenbaum TT; Herbert ME; Tear TH; Perry WL; Herkert JR
    J Environ Qual; 2011; 40(4):1215-28. PubMed ID: 21712591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conventional and conservation tillage: influence on seasonal runoff, sediment, and nutrient losses in the Canadian Prairies.
    Tiessen KH; Elliott JA; Yarotski J; Lobb DA; Flaten DN; Glozier NE
    J Environ Qual; 2010; 39(3):964-80. PubMed ID: 20400592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorus reductions following riparian restoration in two agricultural watersheds in Vermont, USA.
    Meals DW; Hopkins RB
    Water Sci Technol; 2002; 45(9):51-60. PubMed ID: 12079124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed.
    Richards CE; Munster CL; Vietor DM; Arnold JG; White R
    J Environ Manage; 2008 Jan; 86(1):229-45. PubMed ID: 17298864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating farm to catchment nutrient fluxes using dynamic simulation modelling--can agri-environmental BMPs really do the job?
    Rivers MR; Weaver DM; Smettem KR; Davies PM
    J Environ Manage; 2013 Nov; 130():313-23. PubMed ID: 24113535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed.
    Yang Q; Benoy GA; Chow TL; Daigle JL; Bourque CP; Meng FR
    J Environ Qual; 2012; 41(1):64-72. PubMed ID: 22218174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water quality effects of clearcut harvesting and forest fertilization with best management practices.
    McBroom MW; Beasley RS; Chang M; Ice GG
    J Environ Qual; 2008; 37(1):114-24. PubMed ID: 18178884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of simulation mass balance modeling to estimate phosphorus and bacteria dynamics in watersheds.
    Cassell EA; Meals DW; Aschmann SG; Anderson DP; Rosen BH; Kort RL; Dorioz JM
    Water Sci Technol; 2002; 45(9):157-66. PubMed ID: 12079098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic phosphorus mass balance modeling of large watersheds: long-term implications of management strategies.
    Cassell EA; Kort RL; Meals DW; Aschmann SG; Dorioz JM; Anderson DP
    Water Sci Technol; 2001; 43(5):153-62. PubMed ID: 11379127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of multiple beneficial management practices on hydrology and nutrient losses in a small watershed in the Canadian prairies.
    Li S; Elliott JA; Tiessen KH; Yarotski J; Lobb DA; Flaten DN
    J Environ Qual; 2011; 40(5):1627-42. PubMed ID: 21869525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward quantifying water pollution abatement in response to installing buffers on crop land.
    Dosskey MG
    Environ Manage; 2001 Nov; 28(5):577-98. PubMed ID: 11568840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.
    Geng R; Wang X; Sharpley AN; Meng F
    PLoS One; 2015; 10(8):e0130607. PubMed ID: 26313561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.
    Udawatta RP; Garrett HE; Kallenbach R
    J Environ Qual; 2011; 40(3):800-6. PubMed ID: 21546665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales.
    Panagopoulos Y; Makropoulos C; Mimikou M
    J Environ Manage; 2011 Oct; 92(10):2823-35. PubMed ID: 21742430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.