These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19008034)

  • 41. Phosphorus run-off assessment in a watershed.
    Chebud Y; Naja GM; Rivero R
    J Environ Monit; 2011 Jan; 13(1):66-73. PubMed ID: 21069224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices.
    Vagstad N; French HK; Andersen HE; Behrendt H; Grizzetti B; Groenendijk P; Lo Porto A; Reisser H; Siderius C; Stromquist J; Hejzlar J; Deelstra J
    J Environ Monit; 2009 Mar; 11(3):594-601. PubMed ID: 19280037
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nitrogen and phosphorus runoff losses from variable and constant intensity rainfall simulations on loamy sand under conventional and strip tillage systems.
    Franklin D; Truman C; Potter T; Bosch D; Strickland T; Bednarz C
    J Environ Qual; 2007; 36(3):846-54. PubMed ID: 17485716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrating contributing areas and indexing phosphorus loss from agricultural watersheds.
    Sharpley AN; Kleinman PJ; Heathwaite AL; Gburek WJ; Weld JL; Folmar GJ
    J Environ Qual; 2008; 37(4):1488-96. PubMed ID: 18574180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus loss from an agricultural watershed as a function of storm size.
    Sharpley AN; Kleinman PJ; Heathwaite AL; Gburek WJ; Folmar GJ; Schmidt JP
    J Environ Qual; 2008; 37(2):362-8. PubMed ID: 18268298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating nonpoint source critical source area contributions at the watershed scale.
    White MJ; Storm DE; Busteed PR; Stoodley SH; Phillips SJ
    J Environ Qual; 2009; 38(4):1654-63. PubMed ID: 19549942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of nitrogen and phosphorus criteria for streams in agricultural landscapes.
    Chambers PA; Benoy GA; Brua RB; Culp JM
    Water Sci Technol; 2011; 64(11):2185-91. PubMed ID: 22156121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Farm factors associated with reducing Cryptosporidium loading in storm runoff from dairies.
    Miller WA; Lewis DJ; Pereira MD; Lennox M; Conrad PA; Tate KW; Atwill ER
    J Environ Qual; 2008; 37(5):1875-82. PubMed ID: 18689749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures.
    Kronvang B; Bechmann M; Lundekvam H; Behrendt H; Rubaek GH; Schoumans OF; Syversen N; Andersen HE; Hoffmann CC
    J Environ Qual; 2005; 34(6):2129-44. PubMed ID: 16275713
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of a multi-objective optimization method to provide least cost alternatives for NPS pollution control.
    Maringanti C; Chaubey I; Arabi M; Engel B
    Environ Manage; 2011 Sep; 48(3):448-61. PubMed ID: 21667317
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of manure phosphorus export through turfgrass sod production in Erath County, Texas.
    Munster CL; Hanzlik JE; Vietor DM; White RH; McFarland A
    J Environ Manage; 2004 Nov; 73(2):111-6. PubMed ID: 15380316
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluating the success of phosphorus management from field to watershed.
    Sharpley AN; Kleinman PJ; Jordan P; Bergström L; Allen AL
    J Environ Qual; 2009; 38(5):1981-8. PubMed ID: 19704141
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods.
    Cherry KA; Shepherd M; Withers PJ; Mooney SJ
    Sci Total Environ; 2008 Nov; 406(1-2):1-23. PubMed ID: 18771793
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Risk-based targeting of diffuse contaminant sources at variable spatial scales in a New Zealand high country catchment.
    Caruso BS
    J Environ Manage; 2001 Nov; 63(3):249-68. PubMed ID: 11775498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed.
    Giri S; Nejadhashemi AP; Woznicki SA
    J Environ Manage; 2012 Jul; 103():24-40. PubMed ID: 22459068
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diffuse phosphorus models in the United States and europe: their usages, scales, and uncertainties.
    Radcliffe DE; Freer J; Schoumans O
    J Environ Qual; 2009; 38(5):1956-67. PubMed ID: 19704139
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A decision support system for phosphorus management at a watershed scale.
    Djodjic F; Montas H; Shirmohammadi A; Bergström L; Ulén B
    J Environ Qual; 2002; 31(3):937-45. PubMed ID: 12026098
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Guiding BMP adoption to improve water quality in various estuarine ecosystems in Western Australia.
    Keipert N; Weaver D; Summers R; Clarke M; Neville S
    Water Sci Technol; 2008; 57(11):1749-56. PubMed ID: 18547926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lake Nutrient Responses to Integrated Conservation Practices in an Agricultural Watershed.
    Lizotte RE; Yasarer LM; Locke MA; Bingner RL; Knight SS
    J Environ Qual; 2017 Mar; 46(2):330-338. PubMed ID: 28380566
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.