These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 19008197)
1. Uracil in DNA and its processing by different DNA glycosylases. Visnes T; Doseth B; Pettersen HS; Hagen L; Sousa MM; Akbari M; Otterlei M; Kavli B; Slupphaug G; Krokan HE Philos Trans R Soc Lond B Biol Sci; 2009 Mar; 364(1517):563-8. PubMed ID: 19008197 [TBL] [Abstract][Full Text] [Related]
2. Error-free versus mutagenic processing of genomic uracil--relevance to cancer. Krokan HE; Sætrom P; Aas PA; Pettersen HS; Kavli B; Slupphaug G DNA Repair (Amst); 2014 Jul; 19():38-47. PubMed ID: 24746924 [TBL] [Abstract][Full Text] [Related]
3. Uracil in DNA--general mutagen, but normal intermediate in acquired immunity. Kavli B; Otterlei M; Slupphaug G; Krokan HE DNA Repair (Amst); 2007 Apr; 6(4):505-16. PubMed ID: 17116429 [TBL] [Abstract][Full Text] [Related]
4. DNA-uracil and human pathology. Sousa MM; Krokan HE; Slupphaug G Mol Aspects Med; 2007; 28(3-4):276-306. PubMed ID: 17590428 [TBL] [Abstract][Full Text] [Related]
5. Strikingly different properties of uracil-DNA glycosylases UNG2 and SMUG1 may explain divergent roles in processing of genomic uracil. Doseth B; Ekre C; Slupphaug G; Krokan HE; Kavli B DNA Repair (Amst); 2012 Jun; 11(6):587-93. PubMed ID: 22483865 [TBL] [Abstract][Full Text] [Related]
6. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Akbari M; Otterlei M; Peña-Diaz J; Aas PA; Kavli B; Liabakk NB; Hagen L; Imai K; Durandy A; Slupphaug G; Krokan HE Nucleic Acids Res; 2004; 32(18):5486-98. PubMed ID: 15479784 [TBL] [Abstract][Full Text] [Related]
7. Uracil in DNA--occurrence, consequences and repair. Krokan HE; Drabløs F; Slupphaug G Oncogene; 2002 Dec; 21(58):8935-48. PubMed ID: 12483510 [TBL] [Abstract][Full Text] [Related]
8. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. Kavli B; Andersen S; Otterlei M; Liabakk NB; Imai K; Fischer A; Durandy A; Krokan HE; Slupphaug G J Exp Med; 2005 Jun; 201(12):2011-21. PubMed ID: 15967827 [TBL] [Abstract][Full Text] [Related]
9. The rate of base excision repair of uracil is controlled by the initiating glycosylase. Visnes T; Akbari M; Hagen L; Slupphaug G; Krokan HE DNA Repair (Amst); 2008 Nov; 7(11):1869-81. PubMed ID: 18721906 [TBL] [Abstract][Full Text] [Related]
10. Genomic uracil and human disease. Hagen L; Peña-Diaz J; Kavli B; Otterlei M; Slupphaug G; Krokan HE Exp Cell Res; 2006 Aug; 312(14):2666-72. PubMed ID: 16860315 [TBL] [Abstract][Full Text] [Related]
11. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Pettersen HS; Sundheim O; Gilljam KM; Slupphaug G; Krokan HE; Kavli B Nucleic Acids Res; 2007; 35(12):3879-92. PubMed ID: 17537817 [TBL] [Abstract][Full Text] [Related]
14. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Kavli B; Iveland TS; Buchinger E; Hagen L; Liabakk NB; Aas PA; Obermann TS; Aachmann FL; Slupphaug G Nucleic Acids Res; 2021 Apr; 49(7):3948-3966. PubMed ID: 33784377 [TBL] [Abstract][Full Text] [Related]
15. Properties and functions of human uracil-DNA glycosylase from the UNG gene. Krokan HE; Otterlei M; Nilsen H; Kavli B; Skorpen F; Andersen S; Skjelbred C; Akbari M; Aas PA; Slupphaug G Prog Nucleic Acid Res Mol Biol; 2001; 68():365-86. PubMed ID: 11554311 [TBL] [Abstract][Full Text] [Related]
16. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Akbari M; Otterlei M; Peña-Diaz J; Krokan HE Neuroscience; 2007 Apr; 145(4):1201-12. PubMed ID: 17101234 [TBL] [Abstract][Full Text] [Related]
17. Excision of uracil from transcribed DNA negatively affects gene expression. Lühnsdorf B; Epe B; Khobta A J Biol Chem; 2014 Aug; 289(32):22008-18. PubMed ID: 24951587 [TBL] [Abstract][Full Text] [Related]
18. Refining the Neuberger model: Uracil processing by activated B cells. Maul RW; Gearhart PJ Eur J Immunol; 2014 Jul; 44(7):1913-6. PubMed ID: 24920531 [TBL] [Abstract][Full Text] [Related]
19. Uracil-DNA glycosylase in base excision repair and adaptive immunity: species differences between man and mouse. Doseth B; Visnes T; Wallenius A; Ericsson I; Sarno A; Pettersen HS; Flatberg A; Catterall T; Slupphaug G; Krokan HE; Kavli B J Biol Chem; 2011 May; 286(19):16669-80. PubMed ID: 21454529 [TBL] [Abstract][Full Text] [Related]
20. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Nilsen H; Rosewell I; Robins P; Skjelbred CF; Andersen S; Slupphaug G; Daly G; Krokan HE; Lindahl T; Barnes DE Mol Cell; 2000 Jun; 5(6):1059-65. PubMed ID: 10912000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]