BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 19008479)

  • 41. Partial restoration of the long QT syndrome associated KCNQ1 A341V mutant by the KCNE1 β-subunit.
    Mikuni I; Torres CG; Bienengraeber MW; Kwok WM
    Biochim Biophys Acta; 2011 Dec; 1810(12):1285-93. PubMed ID: 21854832
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arrhythmia formation in subclinical ("silent") long QT syndrome requires multiple insults: quantitative mechanistic study using the KCNQ1 mutation Q357R as example.
    O'Hara T; Rudy Y
    Heart Rhythm; 2012 Feb; 9(2):275-82. PubMed ID: 21952006
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autonomic control of cardiac action potentials: role of potassium channel kinetics in response to sympathetic stimulation.
    Terrenoire C; Clancy CE; Cormier JW; Sampson KJ; Kass RS
    Circ Res; 2005 Mar; 96(5):e25-34. PubMed ID: 15731462
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dominant-negative control of cAMP-dependent IKs upregulation in human long-QT syndrome type 1.
    Heijman J; Spätjens RL; Seyen SR; Lentink V; Kuijpers HJ; Boulet IR; de Windt LJ; David M; Volders PG
    Circ Res; 2012 Jan; 110(2):211-9. PubMed ID: 22095730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of abnormal trafficking of KCNE1 in long QT syndrome 5.
    Harmer SC; Tinker A
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1074-6. PubMed ID: 17956282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional phenotype variations of two novel K
    Hammami Bomholtz S; Refaat M; Buur Steffensen A; David JP; Espinosa K; Nussbaum R; Wojciak J; Hjorth Bentzen B; Scheinman M; Schmitt N
    Pacing Clin Electrophysiol; 2020 Feb; 43(2):210-216. PubMed ID: 31899541
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Compound mutations: a common cause of severe long-QT syndrome.
    Westenskow P; Splawski I; Timothy KW; Keating MT; Sanguinetti MC
    Circulation; 2004 Apr; 109(15):1834-41. PubMed ID: 15051636
    [TBL] [Abstract][Full Text] [Related]  

  • 48. N- and C-terminal KCNE1 mutations cause distinct phenotypes of long QT syndrome.
    Ohno S; Zankov DP; Yoshida H; Tsuji K; Makiyama T; Itoh H; Akao M; Hancox JC; Kita T; Horie M
    Heart Rhythm; 2007 Mar; 4(3):332-40. PubMed ID: 17341399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rottlerin: Structure Modifications and KCNQ1/KCNE1 Ion Channel Activity.
    Lübke M; Schreiber JA; Le Quoc T; Körber F; Müller J; Sivanathan S; Matschke V; Schubert J; Strutz-Seebohm N; Seebohm G; Scherkenbeck J
    ChemMedChem; 2020 Jun; 15(12):1078-1088. PubMed ID: 32338831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Action potential clamp and mefloquine sensitivity of recombinant 'I KS' channels incorporating the V307L KCNQ1 mutation.
    El Harchi A; McPate MJ; Zhang YH; Zhang H; Hancox JC
    J Physiol Pharmacol; 2010 Apr; 61(2):123-31. PubMed ID: 20436212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Elevation of propofol sensitivity of cardiac I
    Kojima A; Mi X; Fukushima Y; Ding WG; Omatsu-Kanbe M; Matsuura H
    Br J Pharmacol; 2021 Jul; 178(13):2690-2708. PubMed ID: 33763865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coordinated down-regulation of KCNQ1 and KCNE1 expression contributes to reduction of I(Ks) in canine hypertrophied hearts.
    Ramakers C; Vos MA; Doevendans PA; Schoenmakers M; Wu YS; Scicchitano S; Iodice A; Thomas GP; Antzelevitch C; Dumaine R
    Cardiovasc Res; 2003 Feb; 57(2):486-96. PubMed ID: 12566121
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation, functional characterization, and NMR studies of human KCNE1, a voltage-gated potassium channel accessory subunit associated with deafness and long QT syndrome.
    Tian C; Vanoye CG; Kang C; Welch RC; Kim HJ; George AL; Sanders CR
    Biochemistry; 2007 Oct; 46(41):11459-72. PubMed ID: 17892302
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular mechanisms underlying the increased disease severity seen for patients with long QT syndrome caused by compound mutations in KCNQ1.
    Harmer SC; Mohal JS; Royal AA; McKenna WJ; Lambiase PD; Tinker A
    Biochem J; 2014 Aug; 462(1):133-42. PubMed ID: 24912595
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impaired KCNQ1-KCNE1 and phosphatidylinositol-4,5-bisphosphate interaction underlies the long QT syndrome.
    Park KH; Piron J; Dahimene S; Mérot J; Baró I; Escande D; Loussouarn G
    Circ Res; 2005 Apr; 96(7):730-9. PubMed ID: 15746441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. KCNQ1/KCNE1 assembly, co-translation not required.
    Vanoye CG; Welch RC; Tian C; Sanders CR; George AL
    Channels (Austin); 2010; 4(2):108-14. PubMed ID: 20139709
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of a novel mutant KCNQ1 channel subunit lacking a large part of the C-terminal domain.
    Kimoto K; Kinoshita K; Yokoyama T; Hata Y; Komatsu T; Tsushima E; Nishide K; Yamaguchi Y; Mizumaki K; Tabata T; Inoue H; Nishida N; Fukurotani K
    Biochem Biophys Res Commun; 2013 Oct; 440(2):283-8. PubMed ID: 24070608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Serum- and glucocorticoid-inducible kinases (SGK) regulate KCNQ1/KCNE potassium channels.
    Strutz-Seebohm N; Henrion U; Steinke K; Tapken D; Lang F; Seebohm G
    Channels (Austin); 2009; 3(2):88-90. PubMed ID: 19372749
    [TBL] [Abstract][Full Text] [Related]  

  • 59. KCNE peptides differently affect voltage sensor equilibrium and equilibration rates in KCNQ1 K+ channels.
    Rocheleau JM; Kobertz WR
    J Gen Physiol; 2008 Jan; 131(1):59-68. PubMed ID: 18079560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of specific pore residues mediating KCNQ1 inactivation. A novel mechanism for long QT syndrome.
    Seebohm G; Scherer CR; Busch AE; Lerche C
    J Biol Chem; 2001 Apr; 276(17):13600-5. PubMed ID: 11278406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.