These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19009082)

  • 1. How to very efficiently functionalize gold nanoparticles by "click" chemistry.
    Boisselier E; Salmon L; Ruiz J; Astruc D
    Chem Commun (Camb); 2008 Nov; (44):5788-90. PubMed ID: 19009082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile functionalization of gold nanoparticles via microwave-assisted 1,3 dipolar cycloaddition.
    Sommer WJ; Weck M
    Langmuir; 2007 Nov; 23(24):11991-5. PubMed ID: 17944499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reagentless functionalization of gold nanoparticles via a 3 + 2 Huisgen cycloaddition.
    Limapichat W; Basu A
    J Colloid Interface Sci; 2008 Feb; 318(1):140-4. PubMed ID: 17936777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of proteins by functionalized gold nanoparticles using click chemistry.
    Zhu K; Zhang Y; He S; Chen W; Shen J; Wang Z; Jiang X
    Anal Chem; 2012 May; 84(10):4267-70. PubMed ID: 22540271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel route to copper(II) detection using 'click' chemistry-induced aggregation of gold nanoparticles.
    Hua C; Zhang WH; De Almeida SR; Ciampi S; Gloria D; Liu G; Harper JB; Gooding JJ
    Analyst; 2012 Jan; 137(1):82-6. PubMed ID: 21975428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.
    Chen YM; Cheng TL; Tseng WL
    Analyst; 2009 Oct; 134(10):2106-12. PubMed ID: 19768221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chain-like assembly of gold nanoparticles on artificial DNA templates via 'click chemistry'.
    Fischler M; Sologubenko A; Mayer J; Clever G; Burley G; Gierlich J; Carell T; Simon U
    Chem Commun (Camb); 2008 Jan; (2):169-71. PubMed ID: 18092076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A selective resonance scattering assay for immunoglobulin G using Cu(II)-ascorbic acid-immunonanogold reaction.
    Wei X; Liang A; Zhang SS; Jiang ZL
    Anal Biochem; 2008 Sep; 380(2):223-8. PubMed ID: 18598667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles.
    Heuer-Jungemann A; Kirkwood R; El-Sagheer AH; Brown T; Kanaras AG
    Nanoscale; 2013 Aug; 5(16):7209-12. PubMed ID: 23828172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Click dendrimers and triazole-related aspects: catalysts, mechanism, synthesis, and functions. A bridge between dendritic architectures and nanomaterials.
    Astruc D; Liang L; Rapakousiou A; Ruiz J
    Acc Chem Res; 2012 Apr; 45(4):630-40. PubMed ID: 22148925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and electrochemical applications of gold nanoparticles.
    Guo S; Wang E
    Anal Chim Acta; 2007 Aug; 598(2):181-92. PubMed ID: 17719891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clickable gold nanoparticles as the building block of nanobioprobes.
    Zhang MX; Huang BH; Sun XY; Pang DW
    Langmuir; 2010 Jun; 26(12):10171-6. PubMed ID: 20441155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature.
    Zhao J; Zheng Z; Bottle S; Chou A; Sarina S; Zhu H
    Chem Commun (Camb); 2013 Apr; 49(26):2676-8. PubMed ID: 23435475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of gold nanoparticles with tetracyanoquinoidal molecules. Spectrophotometric determination of the Au0 content of gold nanoparticles.
    Zotti G; Vercelli B; Berlin A
    Anal Chem; 2008 Feb; 80(3):815-8. PubMed ID: 18183962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helical nanofibers of self-assembled bipolar phospholipids as template for gold nanoparticles.
    Meister A; Drescher S; Mey I; Wahab M; Graf G; Garamus VM; Hause G; Mögel HJ; Janshoff A; Dobner B; Blume A
    J Phys Chem B; 2008 Apr; 112(15):4506-11. PubMed ID: 18355066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust ligand shells for biological applications of gold nanoparticles.
    Duchesne L; Gentili D; Comes-Franchini M; Fernig DG
    Langmuir; 2008 Dec; 24(23):13572-80. PubMed ID: 18991409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly between gold-thiolate nanoparticles and the organometallic cluster [Fe(eta5-C5H5)(mu3-CO)]4 toward redox sensing of oxo-anions.
    Aranzaes JR; Belin C; Astruc D
    Chem Commun (Camb); 2007 Sep; (33):3456-8. PubMed ID: 17700880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and efficient identification of bacteria using gold-nanoparticle-poly(para-phenyleneethynylene) constructs.
    Phillips RL; Miranda OR; You CC; Rotello VM; Bunz UH
    Angew Chem Int Ed Engl; 2008; 47(14):2590-4. PubMed ID: 18228547
    [No Abstract]   [Full Text] [Related]  

  • 19. Catalysis: individual nanoparticles in action.
    Gates BC
    Nat Nanotechnol; 2008 Oct; 3(10):583-4. PubMed ID: 18838991
    [No Abstract]   [Full Text] [Related]  

  • 20. Sequential solid-phase fabrication of bifunctional anchors on gold nanoparticles for controllable and scalable nanoscale structure assembly.
    Kim JH; Kim JW
    Langmuir; 2008 Jun; 24(11):5667-71. PubMed ID: 18465887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.