These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 190091)

  • 41. Evaluation of the interactions between the marine bacterium Pseudomonas fluorescens and the microalga Isochrysis galbana in simulated ballast tank environment.
    da Silva Câmara A; de Almeida Fernandes LD
    Arch Microbiol; 2019 Jan; 201(1):35-44. PubMed ID: 30187094
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Iron metabolism in Pseudomonas: salicylic acid, a siderophore of Pseudomonas fluorescens CHAO.
    Meyer JM; Azelvandre P; Georges C
    Biofactors; 1992 Dec; 4(1):23-7. PubMed ID: 1292472
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation of Pseudomonas fluorescens species highly resistant to pentachlorobenzene.
    Montánchez I; Kaberdina AC; Sevillano E; Gallego L; Rodríguez-Couto S; Kaberdin VR
    Folia Microbiol (Praha); 2017 Jul; 62(4):325-334. PubMed ID: 28188482
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antagonistic control of microbial pathogens under iron limitations by siderophore producing bacteria in a chemostat setup.
    Fgaier H; Eberl HJ
    J Theor Biol; 2011 Mar; 273(1):103-14. PubMed ID: 21192949
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Role of alkyloxybenzenes in bacterial adaptation to unfavorable growth conditions ].
    Nikolaev IuA; Borzenkov IA; Tarasov AL; Loĭko NG; Kozlova AN; Gal'chenko VF; El'-Registan GI
    Mikrobiologiia; 2010; 79(6):760-6. PubMed ID: 21774158
    [No Abstract]   [Full Text] [Related]  

  • 46. Predictive modeling of Pseudomonas fluorescens growth under different temperature and pH values.
    Gonçalves LDDA; Piccoli RH; Peres AP; Saúde AV
    Braz J Microbiol; 2017; 48(2):352-358. PubMed ID: 28110805
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of carbon source during growth on sensitivity of Pseudomonas fluorescens to actinomycin D.
    Walker CA; Durham NN
    Can J Microbiol; 1975 Jan; 21(1):69-74. PubMed ID: 46773
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diluent sensitivity in thermally stressed cells of pseudomonas fluorescens.
    Gray RJ; Ordal ZJ; Witter LD
    Appl Environ Microbiol; 1977 May; 33(5):1074-8. PubMed ID: 406839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Influence of salinity and temperature on fatty acid composition of Pseudomonas fluorescens GNP-OHP-3 membrane].
    Pucci GN; Härtig C; Pucci OH
    Rev Argent Microbiol; 2004; 36(1):6-15. PubMed ID: 15174743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Factors affecting the growth of Pseudomonas fluorescens in liquid egg white.
    Nath KR; Baker RC
    Appl Microbiol; 1973 Mar; 25(3):442-6. PubMed ID: 4633431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of growth temperature on the accumulation of glucose-oxidation products in Pseudomonas fluorescens.
    Lynch WH; MacLeod J; Franklin M
    Can J Microbiol; 1975 Oct; 21(10):1553-9. PubMed ID: 811341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Altered regulation of macromolecular synthesis in methionine-inhibited cultures of Pseudomonas fluorescens UK1.
    Laakso S
    Chem Biol Interact; 1977 Feb; 16(2):201-6. PubMed ID: 403021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The EmhABC efflux pump in Pseudomonas fluorescens LP6a is involved in naphthalene tolerance but not efflux.
    Adebusuyi AA; Foght JM
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2587-96. PubMed ID: 22940805
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pseudomonas fluorescens: iron-responsive proteins and their involvement in host infection.
    Sun YY; Sun L
    Vet Microbiol; 2015 Apr; 176(3-4):309-20. PubMed ID: 25680811
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Effect of inorganic detergent components on the biodegradation of alkyl benzenesulfonates].
    Dimkov R; Konstantinova R; Todorov Z
    Zentralbl Mikrobiol; 1985; 140(2):91-5. PubMed ID: 3925658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toxicity of imidazolium- and pyridinium-based ionic liquids and the co-metabolic degradation of N-ethylpyridinium tetrafluoroborate.
    Zhang C; Malhotra SV; Francis AJ
    Chemosphere; 2011 Mar; 82(11):1690-5. PubMed ID: 21112067
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of cysteine on growth, protease production, and catalase activity of Pseudomonas fluorescens.
    Himelbloom BH; Hassan HM
    Appl Environ Microbiol; 1986 Feb; 51(2):418-21. PubMed ID: 3082281
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological control of apple blue mold with Pseudomonas fluorescens.
    Etebarian HR; Sholberg PL; Eastwell KC; Sayler RJ
    Can J Microbiol; 2005 Jul; 51(7):591-8. PubMed ID: 16175208
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Organic acid exudation and pH changes by Gordonia sp. and Pseudomonas fluorescens grown with P adsorbed to goethite.
    Hoberg E; Marschner P; Lieberei R
    Microbiol Res; 2005; 160(2):177-87. PubMed ID: 15881835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of oxygen, iron, and molybdenum on routes of electron transfer in Pseudomonas fluorescens.
    LENHOFF HM; NICHOLAS DJ; KAPLAN NO
    J Biol Chem; 1956 Jun; 220(2):983-95. PubMed ID: 13331955
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.