BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1900953)

  • 1. A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor.
    He JJ; Quiocho FA
    Science; 1991 Mar; 251(5000):1479-81. PubMed ID: 1900953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dominant role of local dipoles in stabilizing uncompensated charges on a sulfate sequestered in a periplasmic active transport protein.
    He JJ; Quiocho FA
    Protein Sci; 1993 Oct; 2(10):1643-7. PubMed ID: 8251939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered interdomain disulfide in the periplasmic receptor for sulfate transport reduces flexibility. Site-directed mutagenesis and ligand-binding studies.
    Jacobson BL; He JJ; Vermersch PS; Lemon DD; Quiocho FA
    J Biol Chem; 1991 Mar; 266(8):5220-5. PubMed ID: 2002055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interdomain salt bridges modulate ligand-induced domain motion of the sulfate receptor protein for active transport.
    Jacobson BL; He JJ; Lemon DD; Quiocho FA
    J Mol Biol; 1992 Jan; 223(1):27-30. PubMed ID: 1309886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conservative and nonconservative mutations in proteins: anomalous mutations in a transport receptor analyzed by free energy and quantum chemical calculations.
    Cannon WR; Briggs JM; Shen J; McCammon JA; Quiocho FA
    Protein Sci; 1995 Mar; 4(3):387-93. PubMed ID: 7795522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulphate sequestered in the sulphate-binding protein of Salmonella typhimurium is bound solely by hydrogen bonds.
    Pflugrath JW; Quiocho FA
    Nature; 1985 Mar 21-27; 314(6008):257-60. PubMed ID: 3885043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2 A resolution structure of the sulfate-binding protein involved in active transport in Salmonella typhimurium.
    Pflugrath JW; Quiocho FA
    J Mol Biol; 1988 Mar; 200(1):163-80. PubMed ID: 3288756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein.
    Vyas NK; Vyas MN; Quiocho FA
    Science; 1988 Dec; 242(4883):1290-5. PubMed ID: 3057628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution.
    Chaudhuri BN; Ko J; Park C; Jones TA; Mowbray SL
    J Mol Biol; 1999 Mar; 286(5):1519-31. PubMed ID: 10064713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic interactions in protein-carbohydrate complexes. Tryptophan residues in the periplasmic maltodextrin receptor for active transport and chemotaxis.
    Spurlino JC; Rodseth LE; Quiocho FA
    J Mol Biol; 1992 Jul; 226(1):15-22. PubMed ID: 1619648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate and thiosulfate transport in Escherichia coli K-12: evidence for a functional overlapping of sulfate- and thiosulfate-binding proteins.
    Sirko A; Zatyka M; Sadowy E; Hulanicka D
    J Bacteriol; 1995 Jul; 177(14):4134-6. PubMed ID: 7608089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues in the alpha helix 7 of the bacterial maltose binding protein which are important in interactions with the Mal FGK2 complex.
    Szmelcman S; Sassoon N; Hofnung M
    Protein Sci; 1997 Mar; 6(3):628-36. PubMed ID: 9070445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxyanion selectivity in sulfate and molybdate transport proteins: an ab initio/CDM study.
    Dudev T; Lim C
    J Am Chem Soc; 2004 Aug; 126(33):10296-305. PubMed ID: 15315443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic tuning of the EF-hand calcium binding motif: the gateway residue independently adjusts (i) barrier height and (ii) equilibrium.
    Drake SK; Falke JJ
    Biochemistry; 1996 Feb; 35(6):1753-60. PubMed ID: 8639655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli.
    Davidson AL; Sharma S
    J Bacteriol; 1997 Sep; 179(17):5458-64. PubMed ID: 9287001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of serine-46 to aspartate in the histidine-containing protein of Escherichia coli mimics the inactivation by phosphorylation of serine-46 in HPrs from gram-positive bacteria.
    Napper S; Anderson JW; Georges F; Quail JW; Delbaere LT; Waygood EB
    Biochemistry; 1996 Sep; 35(35):11260-7. PubMed ID: 8784179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex.
    Hor LI; Shuman HA
    J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of an additional domain located between SXXK and SXN active-site fingerprints in penicillin-binding protein 4 from Escherichia coli.
    Mottl H; Nieland P; de Kort G; Wierenga JJ; Keck W
    J Bacteriol; 1992 May; 174(10):3261-9. PubMed ID: 1577694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.