BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19009542)

  • 1. Response surface methodology and support vector machine for the optimization of separation in linear gradient elution.
    Hadjmohammadi MR; Kamel K
    J Sep Sci; 2008 Dec; 31(22):3864-70. PubMed ID: 19009542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of the separation of chlorophenols with stepwise gradient elution in reversed phase liquid chromatography.
    Hadjmohammadi MR; Kamel K; Fatemi MH
    J Sep Sci; 2007 Nov; 30(16):2687-92. PubMed ID: 17763519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution.
    Jin CH; Lee JW; Row KH
    J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein retention times in gradient hydrophobic interaction chromatographic systems.
    Chen J; Yang T; Cramer SM
    J Chromatogr A; 2008 Jan; 1177(2):207-14. PubMed ID: 18048048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC.
    Lee JW; Row KH
    J Sep Sci; 2009 Jan; 32(2):221-30. PubMed ID: 19156644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.
    Skartland LK; Mjøs SA; Grung B
    J Chromatogr A; 2011 Sep; 1218(38):6823-31. PubMed ID: 21851946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature.
    Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P
    Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-criteria decision making in micellar liquid chromatographic separation of chlorophenols.
    Hadjmohammadi MR; Safa F
    J Sep Sci; 2004 Aug; 27(12):997-1004. PubMed ID: 15352718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multilinear gradient elution optimisation in reversed-phase liquid chromatography using genetic algorithms.
    Nikitas P; Pappa-Louisi A; Agrafiotou P
    J Chromatogr A; 2006 Jul; 1120(1-2):299-307. PubMed ID: 16426624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps.
    Shellie RA; Ng BK; Dicinoski GW; Poynter SD; O'Reilly JW; Pohl CA; Haddad PR
    Anal Chem; 2008 Apr; 80(7):2474-82. PubMed ID: 18327920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of different linear and nonlinear chemometric methods for modeling of retention index of essential oil components: concerns to support vector machine.
    Riahi S; Pourbasheer E; Ganjali MR; Norouzi P
    J Hazard Mater; 2009 Jul; 166(2-3):853-9. PubMed ID: 19144466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation optimization of aniline and seven 4-substituted anilines in high-submicellar liquid chromatography using empirical retention modeling and Derringer's desirability function.
    Hadjmohammadi MR; S J Nazari SS
    J Sep Sci; 2013 Aug; 36(15):2450-7. PubMed ID: 23716348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental equation of dual-mode gradient elution in liquid chromatography involving simultaneous changes in flow rate and mobile-phase composition.
    Pappa-Louisi A; Nikitas P; Balkatzopoulou P; Louizis G
    Anal Chem; 2007 May; 79(10):3888-93. PubMed ID: 17444616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact peak compression factor in linear gradient elution. I. Theory.
    Gritti F; Guiochon G
    J Chromatogr A; 2008 Nov; 1212(1-2):35-40. PubMed ID: 18951548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid optimization of dual-mode gradient high performance liquid chromatographic separation of Radix et Rhizoma Salviae Miltiorrhizae by response surface methodology.
    Song JZ; Qiao CF; Li SL; Zhou Y; Hsieh MT; Xu HX
    J Chromatogr A; 2009 Oct; 1216(42):7007-12. PubMed ID: 19740469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak compression factor of proteins.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Aug; 1216(33):6124-33. PubMed ID: 19604512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-factor Doehlert matrix design in optimising the determination of octadecyltrimethylammonium bromide by cation-exchange chromatography with suppressed conductivity detection.
    Cataldi TR; Orlando D; Nardiello D; Rubino A; Bianco G; Abate S; Ciriello R; Guerrieri A
    Anal Chim Acta; 2007 Jul; 597(1):129-36. PubMed ID: 17658322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.