These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1900982)

  • 21. Comparison of bubble removal performances of five membrane oxygenators with and without a pre-filter.
    Ishida M; Takahashi S; Okamura H
    Perfusion; 2023 Apr; 38(3):530-538. PubMed ID: 35105222
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass.
    Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A
    Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of bubble and membrane oxygenators in short and long perfusions.
    Clark RE; Beauchamp RA; Magrath RA; Brooks JD; Ferguson TB; Weldon CS
    J Thorac Cardiovasc Surg; 1979 Nov; 78(5):655-66. PubMed ID: 491720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pumping O2 with no N2: An Overview of Hollow Fiber Membrane Oxygenators with Integrated Arterial Filters.
    Liu A; Sun Z; Liu Q; Zhu N; Wang S
    Curr Top Med Chem; 2020; 20(1):78-85. PubMed ID: 31820691
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blood--artificial surface interactions during cardiopulmonary bypass. A comparative study of four oxygenators.
    Benedetti M; De Caterina R; Bionda A; Gardinali M; Cicardi M; Maffei S; Gazzetti P; Pistolesi P; Vernazza F; Michelassi C
    Int J Artif Organs; 1990 Aug; 13(8):488-97. PubMed ID: 2146229
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of the effects of membrane and bubble oxygenators on platelet counts and platelet size in elective cardiac operations.
    Trumbull HR; Howe J; Mottl K; Nicoloff DM
    Ann Thorac Surg; 1980 Jul; 30(1):52-7. PubMed ID: 7396579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significance of the concentrated red cell and albumin priming method with particular reference to anaphylatoxin generation.
    Tamiya T; Maeo Y; Okada T; Ogoshi S; Fujimoto S; Yasui H
    J Thorac Cardiovasc Surg; 1992 Jan; 103(1):78-86. PubMed ID: 1728718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pulmonary dysfunction associated with cardiopulmonary bypass: a comparison of bubble and membrane oxygenators.
    Dancy CM; Townsend ER; Boylett A; Chan SL; Parker-Williams EJ; Parker DJ
    Circulation; 1981 Aug; 64(2 Pt 2):II54-7. PubMed ID: 7249329
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Respiratory function after cardiopulmonary bypass: a comparison of bubble and membrane oxygenators.
    Reeve WG; Ingram SM; Smith DC
    J Cardiothorac Vasc Anesth; 1994 Oct; 8(5):502-8. PubMed ID: 7803737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.
    Guan Y; Palanzo D; Kunselman A; Undar A
    Artif Organs; 2009 Nov; 33(11):1037-43. PubMed ID: 19874280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of Gross Air Embolization from Cardiopulmonary Bypass Circuits with Integrated Arterial Line Filters: A Comparison of Circuit Designs.
    Reagor JA; Holt DW
    J Extra Corpor Technol; 2016 Mar; 48(1):19-22. PubMed ID: 27134304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alteration of red cell deformability during extracorporeal bypass: membrane v bubble oxygenator.
    Hakoshima A; Goto H; Abe K; Benson KT; Moran JF; Arakawa K
    J Cardiothorac Anesth; 1989 Apr; 3(2):189-92. PubMed ID: 2519944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of oxygenator mechanical characteristics on energy transfer during clinical cardiopulmonary bypass.
    Ganushchak YM; Reesink KD; Weerwind PW; Maessen JG
    Perfusion; 2011 Jan; 26(1):39-44. PubMed ID: 20921084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of the oxygenator: past, present, and future.
    Iwahashi H; Yuri K; Nosé Y
    J Artif Organs; 2004; 7(3):111-20. PubMed ID: 15558331
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Complement activation with bubble and membrane oxygenators in aortocoronary bypass grafting.
    Videm V; Fosse E; Mollnes TE; Garred P; Svennevig JL
    Ann Thorac Surg; 1990 Sep; 50(3):387-91. PubMed ID: 2205161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Serum nitroglycerin concentrations during extracorporeal circulation with a membrane oxygenator incorporated with a cardiopulmonary bypass circuit].
    Saitoh K; Ikeno S; Horiguchi Y; Fukuda H; Hirabayashi Y; Mitsuhata H; Akazawa S; Kasuda H; Shimizu R
    Masui; 1993 Dec; 42(12):1799-802. PubMed ID: 8301828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Novel Anti-Pollution Filter for Volatile Agents During Cardiopulmonary Bypass: Preliminary Tests.
    Nigro Neto C; Landoni G; Tardelli MA
    J Cardiothorac Vasc Anesth; 2017 Aug; 31(4):1218-1222. PubMed ID: 27810409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cardiopulmonary bypass with two oxygenators.
    Avidan A; Nates J; Levy D; Gertel M
    J Cardiovasc Surg (Torino); 1996 Feb; 37(1):63-5. PubMed ID: 8606210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical comparison between membrane and bubble oxygenators in cardiopulmonary bypass.
    Fenchel G; Seybold-Epting W; Schmidt K; Stunkat R; Hoffmeister HE
    J Cardiovasc Surg (Torino); 1979; 20(4):419-22. PubMed ID: 479280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo uptake and elimination of isoflurane by different membrane oxygenators during cardiopulmonary bypass.
    Wiesenack C; Wiesner G; Keyl C; Gruber M; Philipp A; Ritzka M; Prasser C; Taeger K
    Anesthesiology; 2002 Jul; 97(1):133-8. PubMed ID: 12131114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.