BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 1901027)

  • 21. The lipids of Halobacterium marismortui, an extremely halophilic bacterium in the Dead Sea.
    Evans RW; Kushwaha SC; Kates M
    Biochim Biophys Acta; 1980 Sep; 619(3):533-44. PubMed ID: 7459364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A phytoene desaturase homolog gene from the methanogenic archaeon Methanosarcina acetivorans is responsible for hydroxyarchaeol biosynthesis.
    Mori T; Isobe K; Ogawa T; Yoshimura T; Hemmi H
    Biochem Biophys Res Commun; 2015 Oct; 466(2):186-91. PubMed ID: 26361140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positive and negative tandem mass spectrometric fingerprints of lipids from the halophilic Archaea Haloarcula marismortui.
    de Souza LM; Müller-Santos M; Iacomini M; Gorin PA; Sassaki GL
    J Lipid Res; 2009 Jul; 50(7):1363-73. PubMed ID: 19258281
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CDP-2,3-Di-O-geranylgeranyl-sn-glycerol:L-serine O-archaetidyltransferase (archaetidylserine synthase) in the methanogenic archaeon Methanothermobacter thermautotrophicus.
    Morii H; Koga Y
    J Bacteriol; 2003 Feb; 185(4):1181-9. PubMed ID: 12562787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The absence of intact polar lipid-derived GDGTs in marine waters dominated by Marine Group II: Implications for lipid biosynthesis in Archaea.
    Besseling MA; Hopmans EC; Bale NJ; Schouten S; Damsté JSS; Villanueva L
    Sci Rep; 2020 Jan; 10(1):294. PubMed ID: 31941956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cold adaptation in the Antarctic Archaeon Methanococcoides burtonii involves membrane lipid unsaturation.
    Nichols DS; Miller MR; Davies NW; Goodchild A; Raftery M; Cavicchioli R
    J Bacteriol; 2004 Dec; 186(24):8508-15. PubMed ID: 15576801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells.
    Morii H; Kiyonari S; Ishino Y; Koga Y
    J Biol Chem; 2009 Nov; 284(45):30766-74. PubMed ID: 19740749
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple chromatographic procedure for the detection of cyclized archaebacterial glycerol-bisdiphytanyl-glycerol tetraether core lipids.
    Trincone A; De Rosa M; Gambacorta A; Lanzotti V; Nicolaus B; Harris JE; Grant WD
    J Gen Microbiol; 1988 Dec; 134(12):3159-63. PubMed ID: 3151990
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius.
    Langworthy TA; Mayberry WR; Smith PF
    J Bacteriol; 1974 Jul; 119(1):106-16. PubMed ID: 4407015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosynthesis of archaeal membrane lipids: digeranylgeranylglycerophospholipid reductase of the thermoacidophilic archaeon Thermoplasma acidophilum.
    Nishimura Y; Eguchi T
    J Biochem; 2006 Jun; 139(6):1073-81. PubMed ID: 16788058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CTP:2,3-di-O-geranylgeranyl-sn-glycero-1-phosphate cytidyltransferase in the methanogenic archaeon Methanothermobacter thermoautotrophicus.
    Morii H; Nishihara M; Koga Y
    J Biol Chem; 2000 Nov; 275(47):36568-74. PubMed ID: 10960477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Insights Into the Polar Lipid Composition of Extremely Halo(alkali)philic Euryarchaea From Hypersaline Lakes.
    Bale NJ; Sorokin DY; Hopmans EC; Koenen M; Rijpstra WIC; Villanueva L; Wienk H; Sinninghe Damsté JS
    Front Microbiol; 2019; 10():377. PubMed ID: 30930858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds.
    Hartvigsen K; Ravandi A; Bukhave K; Hølmer G; Kuksis A
    J Mass Spectrom; 2001 Oct; 36(10):1116-24. PubMed ID: 11747105
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polar lipids of four Listeria species containing L-lysylcardiolipin, a novel lipid structure, and other unique phospholipids.
    Fischer W; Leopold K
    Int J Syst Bacteriol; 1999 Apr; 49 Pt 2():653-62. PubMed ID: 10408878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the ratio of tetraether to diether lipids in cattle feces in response to altered dietary ratio of grass silage and concentrates.
    McCartney CA; Dewhurst RJ; Bull ID
    J Anim Sci; 2014 Sep; 92(9):4095-8. PubMed ID: 25085398
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An unusual polar lipid from the cell membrane of Mycoplasma fermentans.
    Deutsch J; Salman M; Rottem S
    Eur J Biochem; 1995 Feb; 227(3):897-902. PubMed ID: 7867652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of polar membrane lipids of the extremely halophilic bacterium Salinibacter ruber and possible role of cardiolipin.
    Lattanzio VM; Baronio M; Oren A; Russell NJ; Corcelli A
    Biochim Biophys Acta; 2009 Jan; 1791(1):25-31. PubMed ID: 18996223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structures of polar lipids from the thermophilic, deep-sea archaeobacterium Methanococcus jannaschii.
    Ferrante G; Richards JC; Sprott GD
    Biochem Cell Biol; 1990 Jan; 68(1):274-83. PubMed ID: 2372322
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms of water and solute transport across archaebacterial lipid membranes.
    Mathai JC; Sprott GD; Zeidel ML
    J Biol Chem; 2001 Jul; 276(29):27266-71. PubMed ID: 11373291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid component parts analysis of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus.
    Tarui M; Tanaka N; Tomura K; Ohga M; Morii H; Koga Y
    J UOEH; 2007 Jun; 29(2):131-9. PubMed ID: 17582985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.