BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19010399)

  • 1. Robotic training and spinal cord plasticity.
    Edgerton VR; Roy RR
    Brain Res Bull; 2009 Jan; 78(1):4-12. PubMed ID: 19010399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why variability facilitates spinal learning.
    Ziegler MD; Zhong H; Roy RR; Edgerton VR
    J Neurosci; 2010 Aug; 30(32):10720-6. PubMed ID: 20702702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury.
    Hinahon E; Estrada C; Tong L; Won DS; de Leon RD
    Neurorehabil Neural Repair; 2017 Aug; 31(8):746-757. PubMed ID: 28741434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function.
    Smith AC; Knikou M
    Neural Plast; 2016; 2016():1216258. PubMed ID: 27293901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eccentric rehabilitation induces white matter plasticity and sensorimotor recovery in chronic spinal cord injury.
    Faw TD; Lakhani B; Schmalbrock P; Knopp MV; Lohse KR; Kramer JLK; Liu H; Nguyen HT; Phillips EG; Bratasz A; Fisher LC; Deibert RJ; Boyd LA; McTigue DM; Basso DM
    Exp Neurol; 2021 Dec; 346():113853. PubMed ID: 34464653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Body weight supported gait training: from laboratory to clinical setting.
    Dietz V
    Brain Res Bull; 2009 Jan; 78(1):I-VI. PubMed ID: 19070780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training locomotor networks.
    Edgerton VR; Courtine G; Gerasimenko YP; Lavrov I; Ichiyama RM; Fong AJ; Cai LL; Otoshi CK; Tillakaratne NJ; Burdick JW; Roy RR
    Brain Res Rev; 2008 Jan; 57(1):241-54. PubMed ID: 18022244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Body weight supported gait training: from laboratory to clinical setting.
    Dietz V
    Brain Res Bull; 2008 Jul; 76(5):459-63. PubMed ID: 18534251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.
    de Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1998 Mar; 79(3):1329-40. PubMed ID: 9497414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning.
    Cai LL; Fong AJ; Otoshi CK; Liang Y; Burdick JW; Roy RR; Edgerton VR
    J Neurosci; 2006 Oct; 26(41):10564-8. PubMed ID: 17035542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates.
    See PA; de Leon RD
    J Neurophysiol; 2013 Aug; 110(3):760-7. PubMed ID: 23678012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of assisted overground stepping in a patient with chronic motor complete spinal cord injury: a case report.
    Murillo N; Kumru H; Opisso E; Padullés JM; Medina J; Vidal J; Kofler M
    NeuroRehabilitation; 2012; 31(4):401-7. PubMed ID: 23232164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional reorganization of soleus H-reflex modulation during stepping after robotic-assisted step training in people with complete and incomplete spinal cord injury.
    Knikou M
    Exp Brain Res; 2013 Jul; 228(3):279-96. PubMed ID: 23708757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treadmill training enhances the recovery of normal stepping patterns in spinal cord contused rats.
    Heng C; de Leon RD
    Exp Neurol; 2009 Mar; 216(1):139-47. PubMed ID: 19111541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retraining the injured spinal cord.
    Edgerton VR; Leon RD; Harkema SJ; Hodgson JA; London N; Reinkensmeyer DJ; Roy RR; Talmadge RJ; Tillakaratne NJ; Timoszyk W; Tobin A
    J Physiol; 2001 May; 533(Pt 1):15-22. PubMed ID: 11351008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury.
    Musienko P; Heutschi J; Friedli L; van den Brand R; Courtine G
    Exp Neurol; 2012 May; 235(1):100-9. PubMed ID: 21925172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.
    Wong JK; Steward O
    Exp Neurol; 2012 Feb; 233(2):693-707. PubMed ID: 22078754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of the spinal neural circuitry after injury.
    Edgerton VR; Tillakaratne NJ; Bigbee AJ; de Leon RD; Roy RR
    Annu Rev Neurosci; 2004; 27():145-67. PubMed ID: 15217329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.