BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19010465)

  • 1. Comparison between artificial neural network and multilinear regression models in an evaluation of cognitive workload in a flight simulator.
    Hannula M; Huttunen K; Koskelo J; Laitinen T; Leino T
    Comput Biol Med; 2008; 38(11-12):1163-70. PubMed ID: 19010465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart rate and performance during combat missions in a flight simulator.
    Lahtinen TM; Koskelo JP; Laitinen T; Leino TK
    Aviat Space Environ Med; 2007 Apr; 78(4):387-91. PubMed ID: 17484341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG and ECG changes during simulator operation reflect mental workload and vigilance.
    Dussault C; Jouanin JC; Philippe M; Guezennec CY
    Aviat Space Environ Med; 2005 Apr; 76(4):344-51. PubMed ID: 15828633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heart rate responses to real and simulated BA Hawk MK 51 flight.
    Ylönen H; Lyytinen H; Leino T; Leppäluoto J; Kuronen P
    Aviat Space Environ Med; 1997 Jul; 68(7):601-5. PubMed ID: 9215465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflight workload assessment: comparison of subjective and physiological measurements.
    Lee YH; Liu BS
    Aviat Space Environ Med; 2003 Oct; 74(10):1078-84. PubMed ID: 14556571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of a Driver's cognitive workload levels using artificial neural network on ECG signals.
    Tjolleng A; Jung K; Hong W; Lee W; Lee B; You H; Son J; Park S
    Appl Ergon; 2017 Mar; 59(Pt A):326-332. PubMed ID: 27890144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heart rate and workload variations in actual and simulated flight.
    Jorna PG
    Ergonomics; 1993 Sep; 36(9):1043-54. PubMed ID: 8404833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship of CogScreen-AE to flight simulator performance and pilot age.
    Taylor JL; O'Hara R; Mumenthaler MS; Yesavage JA
    Aviat Space Environ Med; 2000 Apr; 71(4):373-80. PubMed ID: 10766461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of workload on respiratory variables in simulated flight: a preliminary study.
    Karavidas MK; Lehrer PM; Lu SE; Vaschillo E; Vaschillo B; Cheng A
    Biol Psychol; 2010 Apr; 84(1):157-60. PubMed ID: 20064581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography.
    Fatemi MH; Abraham MH; Poole CF
    J Chromatogr A; 2008 May; 1190(1-2):241-52. PubMed ID: 18395736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of two recorders for obtaining in-flight heart rate data.
    Dahlstrom N; Nahlinder S
    Appl Psychophysiol Biofeedback; 2006 Sep; 31(3):273-9. PubMed ID: 17028999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time generation of representations for cognitive models.
    Brou RJ; Doane SM; Bradshaw GL
    Behav Res Methods; 2009 Aug; 41(3):633-8. PubMed ID: 19587172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mental workload in air traffic control: an index constructed from field tests.
    Averty P; Collet C; Dittmar A; Athènes S; Vernet-Maury E
    Aviat Space Environ Med; 2004 Apr; 75(4):333-41. PubMed ID: 15086123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of artificial neural network model for the development of optimized complex medium for phenol degradation using Pseudomonas pictorum (NICM 2074).
    Annadurai G; Lee JF
    Biodegradation; 2007 Jun; 18(3):383-92. PubMed ID: 17334817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining electrodermal responses and cardiovascular measures for probing adaptive automation during simulated flight.
    Haarmann A; Boucsein W; Schaefer F
    Appl Ergon; 2009 Nov; 40(6):1026-40. PubMed ID: 19520358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotropin effects on stress and performance of airline pilots in simulated flight conditions.
    Thiebauld C; Lintermans J; Friob L
    Methods Find Exp Clin Pharmacol; 1990; 12(6):435-41. PubMed ID: 2087142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The application of artificial neural network in studying landless farmer's mental health problems].
    Zhang XB; Huang SP; Zhuo L; Wu XJ; Sun GX; Zhao HS; Li L
    Zhonghua Liu Xing Bing Xue Za Zhi; 2008 Oct; 29(10):1038-41. PubMed ID: 19173892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A prediction model of occupational manganese exposure based on artificial neural network.
    Li YN; Luo FT; Jiang YM; Lu YR; Huang JL; Zhang ZB
    Toxicol Mech Methods; 2009 Jun; 19(5):337-45. PubMed ID: 19778209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement of observed workload in the analysis of aircrew performance.
    Laudeman IV; Palmer EA
    Int J Aviat Psychol; 1995; 5(2):187-97. PubMed ID: 11540256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceived vs. measured effects of advanced cockpit systems on pilot workload and error: are pilots' beliefs misaligned with reality?
    Casner SM
    Appl Ergon; 2009 May; 40(3):448-56. PubMed ID: 19028379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.