BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 1901054)

  • 1. Use of alkaline phosphatase fusions to study protein secretion in Bacillus subtilis.
    Payne MS; Jackson EN
    J Bacteriol; 1991 Apr; 173(7):2278-82. PubMed ID: 1901054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modular expression and secretion vectors for Bacillus subtilis.
    Nagarajan V; Albertson H; Chen M; Ribbe J
    Gene; 1992 May; 114(1):121-6. PubMed ID: 1587474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose-binding protein, ribose-binding protein, and alkaline phosphatase) in Bacillus subtilis.
    Collier DN
    J Bacteriol; 1994 May; 176(10):3013-20. PubMed ID: 8188602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The YoaW signal peptide directs efficient secretion of different heterologous proteins fused to a StrepII-SUMO tag in Bacillus subtilis.
    Heinrich J; Drewniok C; Neugebauer E; Kellner H; Wiegert T
    Microb Cell Fact; 2019 Feb; 18(1):31. PubMed ID: 30732606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of the pre- and pro-regions of a Staphylococcus hyicus lipase to secretion of a heterologous protein by Bacillus subtilis.
    Kouwen TR; Nielsen AK; Denham EL; Dubois JY; Dorenbos R; Rasmussen MD; Quax WJ; Freudl R; van Dijl JM
    Appl Environ Microbiol; 2010 Feb; 76(3):659-69. PubMed ID: 19948853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Escherichia coli TonB membrane topology by use of PhoA fusions.
    Roof SK; Allard JD; Bertrand KP; Postle K
    J Bacteriol; 1991 Sep; 173(17):5554-7. PubMed ID: 1885532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the secretion efficiency of a plant signal peptide in Bacillus subtilis.
    Ribbe J; Nagarajan V
    Mol Gen Genet; 1992 Nov; 235(2-3):333-9. PubMed ID: 1465106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anchoring proteins to Escherichia coli cell membranes using hydrophobic anchors derived from a Bacillus subtilis integral membrane protein.
    Yang C; Xie H; Zhang JK; Su BL
    Protein Expr Purif; 2012 Sep; 85(1):60-5. PubMed ID: 22750396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis.
    Hulett FM; Lee J; Shi L; Sun G; Chesnut R; Sharkova E; Duggan MF; Kapp N
    J Bacteriol; 1994 Mar; 176(5):1348-58. PubMed ID: 8113174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A topological model for the haemolysin translocator protein HlyD.
    Schülein R; Gentschev I; Mollenkopf HJ; Goebel W
    Mol Gen Genet; 1992 Jul; 234(1):155-63. PubMed ID: 1495479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus subtilis alkaline phosphatase IV acquires activity only late at the stationary phase when produced in Escherichia coli. Overexpression and characterization of the recombinant enzyme.
    Koksharov M; Lv C; Zhai X; Ugarova N; Huang E
    Protein Expr Purif; 2013 Aug; 90(2):186-94. PubMed ID: 23791800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane topology of the pBR322 tetracycline resistance protein. TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion.
    Allard JD; Bertrand KP
    J Biol Chem; 1992 Sep; 267(25):17809-19. PubMed ID: 1517220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The roles of signal peptide and mature protein in RNase (barnase) export from Bacillus subtilis.
    Chen M; Nagarajan V
    Mol Gen Genet; 1993 Jun; 239(3):409-15. PubMed ID: 8316212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new potential secretion pathway for recombinant proteins in Bacillus subtilis.
    Wang G; Xia Y; Gu Z; Zhang H; Chen YQ; Chen H; Ai L; Chen W
    Microb Cell Fact; 2015 Nov; 14():179. PubMed ID: 26555397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of protein localization by use of gene fusions with complementary properties.
    Manoil C
    J Bacteriol; 1990 Feb; 172(2):1035-42. PubMed ID: 2153653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pSKAP/S: An expression vector for the production of single-chain Fv alkaline phosphatase fusion proteins.
    Griep RA; van Twisk C; Kerschbaumer RJ; Harper K; Torrance L; Himmler G; van der Wolf JM; Schots A
    Protein Expr Purif; 1999 Jun; 16(1):63-9. PubMed ID: 10336861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus subtilis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure.
    Hulett FM; Kim EE; Bookstein C; Kapp NV; Edwards CW; Wyckoff HW
    J Biol Chem; 1991 Jan; 266(2):1077-84. PubMed ID: 1898729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAIII mutation on total alkaline phosphatase synthesis.
    Bookstein C; Edwards CW; Kapp NV; Hulett FM
    J Bacteriol; 1990 Jul; 172(7):3730-7. PubMed ID: 2113910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a bifunctional Escherichia coli heat-stable enterotoxin (STb)-alkaline phosphatase fusion protein.
    Urban RG; Dreyfus LA; Whipp SC
    Infect Immun; 1990 Nov; 58(11):3645-52. PubMed ID: 2228236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secretion of Bacillus subtilis alpha-amylase in the periplasmic space of Escherichia coli.
    Tachibana K; Yoda K; Watanabe S; Kadokura H; Katayama Y; Yamane K; Yamasaki M; Tamura G
    J Gen Microbiol; 1987 Jul; 133(7):1775-82. PubMed ID: 3117969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.