These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 1901056)

  • 21. Structural dynamics in the C-terminal domain of calmodulin at low calcium levels.
    Malmendal A; Evenäs J; Forsén S; Akke M
    J Mol Biol; 1999 Nov; 293(4):883-99. PubMed ID: 10543974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calcium binding sites of calmodulin and electron transfer by neuronal nitric oxide synthase.
    Stevens-Truss R; Beckingham K; Marletta MA
    Biochemistry; 1997 Oct; 36(40):12337-45. PubMed ID: 9315874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative endoproteinase GluC footprinting of cooperative Ca2+ binding to calmodulin: proteolytic susceptibility of E31 and E87 indicates interdomain interactions.
    Pedigo S; Shea MA
    Biochemistry; 1995 Jan; 34(4):1179-96. PubMed ID: 7827068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium binding induces interaction between the N- and C-terminal domains of yeast calmodulin and modulates its overall conformation.
    Nakashima K; Ishida H; Ohki SY; Hikichi K; Yazawa M
    Biochemistry; 1999 Jan; 38(1):98-104. PubMed ID: 9890887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A site-directed mutagenesis study of yeast calmodulin.
    Matsuura I; Ishihara K; Nakai Y; Yazawa M; Toda H; Yagi K
    J Biochem; 1991 Jan; 109(1):190-7. PubMed ID: 2016268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Site-specific replacement of amino acid residues in the CD site of rat parvalbumin changes the metal specificity of this Ca2+/Mg(2+)-mixed site toward a Ca(2+)-specific site.
    Pauls TL; Durussel I; Clark ID; Szabo AG; Berchtold MW; Cox JA
    Eur J Biochem; 1996 Dec; 242(2):249-55. PubMed ID: 8973640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 1H-NMR studies of calmodulin. The nature of the Ca2+-dependent conformational change.
    Klevit RE; Dalgarno DC; Levine BA; Williams RJ
    Eur J Biochem; 1984 Feb; 139(1):109-14. PubMed ID: 6697998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium-binding properties of a calcium-dependent protein kinase from Plasmodium falciparum and the significance of individual calcium-binding sites for kinase activation.
    Zhao Y; Pokutta S; Maurer P; Lindt M; Franklin RM; Kappes B
    Biochemistry; 1994 Mar; 33(12):3714-21. PubMed ID: 8142371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-dimensional 1H nuclear magnetic resonance studies of the half-saturated (Ca2+)1 state of calbindin D9k. Further implications for the molecular basis of cooperative Ca2+ binding.
    Carlström G; Chazin WJ
    J Mol Biol; 1993 May; 231(2):415-30. PubMed ID: 8389885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acid pairs increase the N-terminal Ca2+ affinity of CaM by increasing the rate of Ca2+ association.
    Black DJ; Tikunova SB; Johnson JD; Davis JP
    Biochemistry; 2000 Nov; 39(45):13831-7. PubMed ID: 11076523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temperature dependent conformational changes in calmodulin.
    Gangola P; Pant HC
    Biochem Biophys Res Commun; 1983 Feb; 111(1):301-5. PubMed ID: 6830594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blocking the Ca2+-induced conformational transitions in calmodulin with disulfide bonds.
    Tan RY; Mabuchi Y; Grabarek Z
    J Biol Chem; 1996 Mar; 271(13):7479-83. PubMed ID: 8631777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Helix A stabilization precedes amino-terminal lobe activation upon calcium binding to calmodulin.
    Chen B; Lowry DF; Mayer MU; Squier TC
    Biochemistry; 2008 Sep; 47(35):9220-6. PubMed ID: 18690719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of distinct structural elements to activation of calpain by Ca2+ ions.
    Alexa A; Bozóky Z; Farkas A; Tompa P; Friedrich P
    J Biol Chem; 2004 May; 279(19):20118-26. PubMed ID: 14976200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calmodulin binding to myosin light chain kinase begins at substoichiometric Ca2+ concentrations: a small-angle scattering study of binding and conformational transitions.
    Krueger JK; Bishop NA; Blumenthal DK; Zhi G; Beckingham K; Stull JT; Trewhella J
    Biochemistry; 1998 Dec; 37(51):17810-7. PubMed ID: 9922147
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing site-specific calmodulin calcium and lanthanide affinity by grafting.
    Ye Y; Lee HW; Yang W; Shealy S; Yang JJ
    J Am Chem Soc; 2005 Mar; 127(11):3743-50. PubMed ID: 15771508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Ca2+-dependent binding of calmodulin to an N-terminal motif of the heterotrimeric G protein beta subunit.
    Liu M; Yu B; Nakanishi O; Wieland T; Simon M
    J Biol Chem; 1997 Jul; 272(30):18801-7. PubMed ID: 9228054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calmodulin-binding sites on adenylyl cyclase type VIII.
    Gu C; Cooper DM
    J Biol Chem; 1999 Mar; 274(12):8012-21. PubMed ID: 10075700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteolytic footprinting titrations for estimating ligand-binding constants and detecting pathways of conformational switching of calmodulin.
    Shea MA; Sorensen BR; Pedigo S; Verhoeven AS
    Methods Enzymol; 2000; 323():254-301. PubMed ID: 10944756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+ binding site 2 in calcineurin-B modulates calmodulin-dependent calcineurin phosphatase activity.
    Feng B; Stemmer PM
    Biochemistry; 2001 Jul; 40(30):8808-14. PubMed ID: 11467941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.