These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 19010800)
1. Genetic variation of piperidine alkaloids in Pinus ponderosa: a common garden study. Gerson EA; Kelsey RG; St Clair JB Ann Bot; 2009 Feb; 103(3):447-57. PubMed ID: 19010800 [TBL] [Abstract][Full Text] [Related]
2. Exploring Climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) Haplotypes in the Western United States: Implications for Evolutionary History and Conservation. Shinneman DJ; Means RE; Potter KM; Hipkins VD PLoS One; 2016; 11(3):e0151811. PubMed ID: 26985674 [TBL] [Abstract][Full Text] [Related]
3. Intraspecific Niche Models for Ponderosa Pine (Pinus ponderosa) Suggest Potential Variability in Population-Level Response to Climate Change. Maguire KC; Shinneman DJ; Potter KM; Hipkins VD Syst Biol; 2018 Nov; 67(6):965-978. PubMed ID: 29548012 [TBL] [Abstract][Full Text] [Related]
4. An integrated model of environmental effects on growth, carbohydrate balance, and mortality of Pinus ponderosa forests in the southern Rocky Mountains. Tague CL; McDowell NG; Allen CD PLoS One; 2013; 8(11):e80286. PubMed ID: 24282532 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees. Kerhoulas LP; Kane JM Tree Physiol; 2012 Jan; 32(1):14-23. PubMed ID: 22094578 [TBL] [Abstract][Full Text] [Related]
6. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation. Potter KM; Hipkins VD; Mahalovich MF; Means RE Am J Bot; 2013 Aug; 100(8):1562-79. PubMed ID: 23876453 [TBL] [Abstract][Full Text] [Related]
7. Isozyme markers associated with O(3) tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California. Staszak J; Grulke NE; Marrett MJ; Prus-Glowacki W Environ Pollut; 2007 Oct; 149(3):366-75. PubMed ID: 17698266 [TBL] [Abstract][Full Text] [Related]
8. Pinus ponderosa: A checkered past obscured four species. Willyard A; Gernandt DS; Potter K; Hipkins V; Marquardt P; Mahalovich MF; Langer SK; Telewski FW; Cooper B; Douglas C; Finch K; Karemera HH; Lefler J; Lea P; Wofford A Am J Bot; 2017 Jan; 104(1):161-181. PubMed ID: 28031167 [TBL] [Abstract][Full Text] [Related]
9. 13C discriminations of Pinus sylvestris vs. Pinus ponderosa at a dry site in Brandenburg (eastern Germany): 100-year growth comparison. Wagner R; Insinna PA; Götz B; Junge S; Boettger T Isotopes Environ Health Stud; 2007 Jun; 43(2):117-28. PubMed ID: 17558749 [TBL] [Abstract][Full Text] [Related]
10. Changes in physiological attributes of ponderosa pine from seedling to mature tree. Grulke NE; Retzlaff WA Tree Physiol; 2001 Mar; 21(5):275-86. PubMed ID: 11262919 [TBL] [Abstract][Full Text] [Related]
11. Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates. Kerr KL; Meinzer FC; McCulloh KA; Woodruff DR; Marias DE Tree Physiol; 2015 May; 35(5):535-48. PubMed ID: 25934987 [TBL] [Abstract][Full Text] [Related]
12. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Rodman KC; Veblen TT; Chapman TB; Rother MT; Wion AP; Redmond MD Ecol Appl; 2020 Jan; 30(1):e02001. PubMed ID: 31518473 [TBL] [Abstract][Full Text] [Related]
13. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Anderegg LD; HilleRisLambers J Glob Chang Biol; 2016 Mar; 22(3):1029-45. PubMed ID: 26663665 [TBL] [Abstract][Full Text] [Related]
14. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone. Garcia MO; Smith JE; Luoma DL; Jones MD Mycorrhiza; 2016 May; 26(4):275-86. PubMed ID: 26547440 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic selection on ponderosa pine seed and seedling traits in the field under three experimentally manipulated drought treatments. Warwell MV; Shaw RG Evol Appl; 2019 Feb; 12(2):159-174. PubMed ID: 30697331 [TBL] [Abstract][Full Text] [Related]
16. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Davis KT; Dobrowski SZ; Higuera PE; Holden ZA; Veblen TT; Rother MT; Parks SA; Sala A; Maneta MP Proc Natl Acad Sci U S A; 2019 Mar; 116(13):6193-6198. PubMed ID: 30858310 [TBL] [Abstract][Full Text] [Related]
17. Stronger influence of growth rate than severity of drought stress on mortality of large ponderosa pines during the 2012-2015 California drought. Keen RM; Voelker SL; Bentz BJ; Wang SS; Ferrell R Oecologia; 2020 Nov; 194(3):359-370. PubMed ID: 33030569 [TBL] [Abstract][Full Text] [Related]
18. Rapid Induction of Multiple Terpenoid Groups by Ponderosa Pine in Response to Bark Beetle-Associated Fungi. Keefover-Ring K; Trowbridge A; Mason CJ; Raffa KF J Chem Ecol; 2016 Jan; 42(1):1-12. PubMed ID: 26662358 [TBL] [Abstract][Full Text] [Related]
19. Blue wild-rye grass competition increases the effect of ozone on ponderosa pine seedlings. Andersen CP; Hogsett WE; Plocher M; Rodecap K; Lee EH Tree Physiol; 2001 Mar; 21(5):319-27. PubMed ID: 11262923 [TBL] [Abstract][Full Text] [Related]
20. Masting in ponderosa pine: comparisons of pollen and seed over space and time. Mooney KA; Linhart YB; Snyder MA Oecologia; 2011 Mar; 165(3):651-61. PubMed ID: 20706849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]