BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19010806)

  • 1. Phospholipid scramblases and Tubby-like proteins belong to a new superfamily of membrane tethered transcription factors.
    Bateman A; Finn RD; Sims PJ; Wiedmer T; Biegert A; Söding J
    Bioinformatics; 2009 Jan; 25(2):159-62. PubMed ID: 19010806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two phospholipid scramblase 1-related proteins (PLSCR1like-a & -b) from Liza haematocheila: Molecular and transcriptional features and expression analysis after immune stimulation.
    Sandamalika WMG; Priyathilaka TT; Nam BH; Lee J
    Fish Shellfish Immunol; 2019 Apr; 87():32-42. PubMed ID: 30593902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flip-Flop Promotion Mechanisms by Model Transmembrane Peptides.
    Nakao H; Nakano M
    Chem Pharm Bull (Tokyo); 2022; 70(8):519-523. PubMed ID: 35908916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of Ca
    Falzone ME; Rheinberger J; Lee BC; Peyear T; Sasset L; Raczkowski AM; Eng ET; Di Lorenzo A; Andersen OS; Nimigean CM; Accardi A
    Elife; 2019 Jan; 8():. PubMed ID: 30648972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IgE receptor type I-dependent tyrosine phosphorylation of phospholipid scramblase.
    Pastorelli C; Veiga J; Charles N; Voignier E; Moussu H; Monteiro RC; Benhamou M
    J Biol Chem; 2001 Jun; 276(23):20407-12. PubMed ID: 11259432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identity of a conserved motif in phospholipid scramblase that is required for Ca2+-accelerated transbilayer movement of membrane phospholipids.
    Zhou Q; Sims PJ; Wiedmer T
    Biochemistry; 1998 Feb; 37(8):2356-60. PubMed ID: 9485382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G-protein signaling through tubby proteins.
    Santagata S; Boggon TJ; Baird CL; Gomez CA; Zhao J; Shan WS; Myszka DG; Shapiro L
    Science; 2001 Jun; 292(5524):2041-50. PubMed ID: 11375483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils.
    Frasch SC; Henson PM; Nagaosa K; Fessler MB; Borregaard N; Bratton DL
    J Biol Chem; 2004 Apr; 279(17):17625-33. PubMed ID: 14766753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological characterization of the mitochondrial phospholipid scramblase 3.
    Luévano-Martínez LA; Kowaltowski AJ
    FEBS Lett; 2017 Dec; 591(24):4056-4066. PubMed ID: 29171872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid scramblases: an overview.
    Sahu SK; Gummadi SN; Manoj N; Aradhyam GK
    Arch Biochem Biophys; 2007 Jun; 462(1):103-14. PubMed ID: 17481571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implication of tubby proteins as transcription factors by structure-based functional analysis.
    Boggon TJ; Shan WS; Santagata S; Myers SC; Shapiro L
    Science; 1999 Dec; 286(5447):2119-25. PubMed ID: 10591637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural mapping of fluorescently-tagged, functional nhTMEM16 scramblase in a lipid bilayer.
    Andra KK; Dorsey S; Royer CA; Menon AK
    J Biol Chem; 2018 Aug; 293(31):12248-12258. PubMed ID: 29903908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane binding and insertion of the predicted transmembrane domain of human scramblase 1.
    Posada IM; Busto JV; Goñi FM; Alonso A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):388-97. PubMed ID: 24099740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport.
    Montigny C; Lyons J; Champeil P; Nissen P; Lenoir G
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):767-783. PubMed ID: 26747647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction.
    Banfield MJ; Barker JJ; Perry AC; Brady RL
    Structure; 1998 Oct; 6(10):1245-54. PubMed ID: 9782050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a phospholipid scramblase encoded by planarian Dugesia japonica.
    Han Y; Li A; Gao L; Wu W; Deng H; Hu W; Li N; Sun S; Zhang X; Zhao B; Liu B; Pang Q
    Gene; 2017 Feb; 602():43-49. PubMed ID: 27871925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminal proline-rich domain is required for scrambling activity of human phospholipid scramblases.
    Rayala S; Francis VG; Sivagnanam U; Gummadi SN
    J Biol Chem; 2014 May; 289(19):13206-18. PubMed ID: 24648509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure.
    Désormeaux A; Blochet JE; Pézolet M; Marion D
    Biochim Biophys Acta; 1992 May; 1121(1-2):137-52. PubMed ID: 1599935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flip-flop of fluorescently labeled phospholipids in proteoliposomes reconstituted with Saccharomyces cerevisiae microsomal proteins.
    Vehring S; Pakkiri L; Schröer A; Alder-Baerens N; Herrmann A; Menon AK; Pomorski T
    Eukaryot Cell; 2007 Sep; 6(9):1625-34. PubMed ID: 17616631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics and energetics of the mammalian phosphatidylinositol transfer protein phospholipid exchange cycle.
    Grabon A; Orłowski A; Tripathi A; Vuorio J; Javanainen M; Róg T; Lönnfors M; McDermott MI; Siebert G; Somerharju P; Vattulainen I; Bankaitis VA
    J Biol Chem; 2017 Sep; 292(35):14438-14455. PubMed ID: 28718450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.