These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 19010890)
1. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Alpini G; Invernizzi P; Gaudio E; Venter J; Kopriva S; Bernuzzi F; Onori P; Franchitto A; Coufal M; Frampton G; Alvaro D; Lee SP; Marzioni M; Benedetti A; DeMorrow S Cancer Res; 2008 Nov; 68(22):9184-93. PubMed ID: 19010890 [TBL] [Abstract][Full Text] [Related]
2. Increased local dopamine secretion has growth-promoting effects in cholangiocarcinoma. Coufal M; Invernizzi P; Gaudio E; Bernuzzi F; Frampton GA; Onori P; Franchitto A; Carpino G; Ramirez JC; Alvaro D; Marzioni M; Battisti G; Benedetti A; DeMorrow S Int J Cancer; 2010 May; 126(9):2112-22. PubMed ID: 19795457 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma. Francis H; DeMorrow S; Venter J; Onori P; White M; Gaudio E; Francis T; Greene JF; Tran S; Meininger CJ; Alpini G Gut; 2012 May; 61(5):753-64. PubMed ID: 21873469 [TBL] [Abstract][Full Text] [Related]
4. Monoamine oxidase A expression is suppressed in human cholangiocarcinoma via coordinated epigenetic and IL-6-driven events. Huang L; Frampton G; Rao A; Zhang KS; Chen W; Lai JM; Yin XY; Walker K; Culbreath B; Leyva-Illades D; Quinn M; McMillin M; Bradley M; Liang LJ; DeMorrow S Lab Invest; 2012 Oct; 92(10):1451-60. PubMed ID: 22906985 [TBL] [Abstract][Full Text] [Related]
5. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism. Frampton G; Invernizzi P; Bernuzzi F; Pae HY; Quinn M; Horvat D; Galindo C; Huang L; McMillin M; Cooper B; Rimassa L; DeMorrow S Gut; 2012 Feb; 61(2):268-77. PubMed ID: 22068162 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of biliary carcinogenesis and growth. Wise C; Pilanthananond M; Perry BF; Alpini G; McNeal M; Glaser SS World J Gastroenterol; 2008 May; 14(19):2986-9. PubMed ID: 18494047 [TBL] [Abstract][Full Text] [Related]
7. Recent advances in the regulation of cholangiocarcinoma growth. Francis H; Alpini G; DeMorrow S Am J Physiol Gastrointest Liver Physiol; 2010 Jul; 299(1):G1-9. PubMed ID: 20430870 [TBL] [Abstract][Full Text] [Related]
8. Regulators of apoptosis in cholangiocarcinoma. Jhala NC; Vickers SM; Argani P; McDonald JM Arch Pathol Lab Med; 2005 Apr; 129(4):481-6. PubMed ID: 15794670 [TBL] [Abstract][Full Text] [Related]
9. Down-regulation of aquaporin-1 in intrahepatic cholangiocarcinoma is related to tumor progression and mucin expression. Aishima S; Kuroda Y; Nishihara Y; Taguchi K; Iguchi T; Taketomi A; Maehara Y; Tsuneyoshi M Hum Pathol; 2007 Dec; 38(12):1819-25. PubMed ID: 17854859 [TBL] [Abstract][Full Text] [Related]
10. Epidermal growth factor-like domain multiple 7 (EGFL7): Expression and possible effect on biliary epithelium growth in cholangiocarcinoma. Mammola CL; Vetuschi A; Pannarale L; Sferra R; Mancinelli R Eur J Histochem; 2018 Nov; 62(4):. PubMed ID: 30504933 [TBL] [Abstract][Full Text] [Related]
11. Expression of tenascin, type IV collagen and laminin during human intrahepatic bile duct development and in intrahepatic cholangiocarcinoma. Terada T; Nakanuma Y Histopathology; 1994 Aug; 25(2):143-50. PubMed ID: 7527010 [TBL] [Abstract][Full Text] [Related]
12. The expression of matrix metalloproteinases in intrahepatic cholangiocarcinoma, hilar (Klatskin tumor), middle and distal extrahepatic cholangiocarcinoma, gallbladder cancer, and ampullary carcinoma: role of matrix metalloproteinases in tumor progression and prognosis. Kirimlioğlu H; Türkmen I; Başsüllü N; Dirican A; Karadağ N; Kirimlioğlu V Turk J Gastroenterol; 2009 Mar; 20(1):41-7. PubMed ID: 19330734 [TBL] [Abstract][Full Text] [Related]
13. Autocrine parathyroid hormone-like hormone promotes intrahepatic cholangiocarcinoma cell proliferation via increased ERK/JNK-ATF2-cyclinD1 signaling. Tang J; Liao Y; He S; Shi J; Peng L; Xu X; Xie F; Diao N; Huang J; Xie Q; Lin C; Luo X; Liao K; Ma J; Li J; Zhou D; Li Z; Xu J; Zhong C; Wang G; Bai L J Transl Med; 2017 Nov; 15(1):238. PubMed ID: 29178939 [TBL] [Abstract][Full Text] [Related]
14. miR-34a-dependent overexpression of Per1 decreases cholangiocarcinoma growth. Han Y; Meng F; Venter J; Wu N; Wan Y; Standeford H; Francis H; Meininger C; Greene J; Trzeciakowski JP; Ehrlich L; Glaser S; Alpini G J Hepatol; 2016 Jun; 64(6):1295-304. PubMed ID: 26923637 [TBL] [Abstract][Full Text] [Related]
15. Immunohistochemical demonstration of MET overexpression in human intrahepatic cholangiocarcinoma and in hepatolithiasis. Terada T; Nakanuma Y; Sirica AE Hum Pathol; 1998 Feb; 29(2):175-80. PubMed ID: 9490278 [TBL] [Abstract][Full Text] [Related]
17. Effects of bile from patient with transduodenal sphincteroplasty on the growth of human cholangiocarcinoma cell line. Wu G; Zou S; Liu Z; Qiu F Chin Med Sci J; 2004 Mar; 19(1):72. PubMed ID: 15104232 [No Abstract] [Full Text] [Related]
18. Intrahepatic cholangiocarcinoma showing mixed differentiation: a case report. Shimonishi T; Sugawara H; Miyazaki K; Nakanuma Y Histopathology; 1998 Nov; 33(5):488-90. PubMed ID: 9839179 [No Abstract] [Full Text] [Related]
19. Sox9 expression in carcinogenesis and its clinical significance in intrahepatic cholangiocarcinoma. Matsushima H; Kuroki T; Kitasato A; Adachi T; Tanaka T; Hirabaru M; Hirayama T; Kuroshima N; Hidaka M; Soyama A; Takatsuki M; Kinoshita N; Sano K; Nishida N; Eguchi S Dig Liver Dis; 2015 Dec; 47(12):1067-75. PubMed ID: 26341967 [TBL] [Abstract][Full Text] [Related]
20. Mutation of Su L; Zhang X; Zheng L; Wang M; Zhu Z; Li P Front Endocrinol (Lausanne); 2020; 11():189. PubMed ID: 32373065 [No Abstract] [Full Text] [Related] [Next] [New Search]