BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19011132)

  • 1. Gating and trafficking of ClC-2 chloride channel without cystathionine beta-synthase domains.
    Arreola J; De Santiago-Castillo JA; Sánchez JE; Nieto PG
    J Physiol; 2008 Nov; 586(22):5289. PubMed ID: 19011132
    [No Abstract]   [Full Text] [Related]  

  • 2. Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
    Garcia-Olivares J; Alekov A; Boroumand MR; Begemann B; Hidalgo P; Fahlke C
    J Physiol; 2008 Nov; 586(22):5325-36. PubMed ID: 18801843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytoplasmic ATP-sensing domains regulate gating of skeletal muscle ClC-1 chloride channels.
    Bennetts B; Rychkov GY; Ng HL; Morton CJ; Stapleton D; Parker MW; Cromer BA
    J Biol Chem; 2005 Sep; 280(37):32452-8. PubMed ID: 16027167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for CBS domain 2 in trafficking of chloride channel CLC-5.
    Carr G; Simmons N; Sayer J
    Biochem Biophys Res Commun; 2003 Oct; 310(2):600-5. PubMed ID: 14521953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and structural conservation of CBS domains from CLC chloride channels.
    Estévez R; Pusch M; Ferrer-Costa C; Orozco M; Jentsch TJ
    J Physiol; 2004 Jun; 557(Pt 2):363-78. PubMed ID: 14724190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1.
    Ludwig CF; Ullrich F; Leisle L; Stauber T; Jentsch TJ
    J Biol Chem; 2013 Oct; 288(40):28611-9. PubMed ID: 23983121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional complementation of truncated human skeletal-muscle chloride channel (hClC-1) using carboxyl tail fragments.
    Wu W; Rychkov GY; Hughes BP; Bretag AH
    Biochem J; 2006 Apr; 395(1):89-97. PubMed ID: 16321142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
    Yamada T; Krzeminski M; Bozoky Z; Forman-Kay JD; Strange K
    Biophys J; 2016 Nov; 111(9):1876-1886. PubMed ID: 27806269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding of ATP to the CBS domains in the C-terminal region of CLC-1.
    Tseng PY; Yu WP; Liu HY; Zhang XD; Zou X; Chen TY
    J Gen Physiol; 2011 Apr; 137(4):357-68. PubMed ID: 21444658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CLC chloride channels: correlating structure with function.
    Estévez R; Jentsch TJ
    Curr Opin Struct Biol; 2002 Aug; 12(4):531-9. PubMed ID: 12163078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation and reduction control of the inactivation gating of Torpedo ClC-0 chloride channels.
    Li Y; Yu WP; Lin CW; Chen TY
    Biophys J; 2005 Jun; 88(6):3936-45. PubMed ID: 15778445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a eukaryotic CLC transporter defines an intermediate state in the transport cycle.
    Feng L; Campbell EB; Hsiung Y; MacKinnon R
    Science; 2010 Oct; 330(6004):635-41. PubMed ID: 20929736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of ClC-2 gating by intracellular ATP.
    Stölting G; Teodorescu G; Begemann B; Schubert J; Nabbout R; Toliat MR; Sander T; Nürnberg P; Lerche H; Fahlke C
    Pflugers Arch; 2013 Oct; 465(10):1423-37. PubMed ID: 23632988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular physiology of renal ClC chloride channels/transporters.
    Sile S; Vanoye CG; George AL
    Curr Opin Nephrol Hypertens; 2006 Sep; 15(5):511-6. PubMed ID: 16914964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large movement in the C terminus of CLC-0 chloride channel during slow gating.
    Bykova EA; Zhang XD; Chen TY; Zheng J
    Nat Struct Mol Biol; 2006 Dec; 13(12):1115-9. PubMed ID: 17115052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Putting the pieces together: a crystal clear window into CLC anion channel regulation.
    Strange K
    Channels (Austin); 2011; 5(2):101-5. PubMed ID: 21317557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotides bind to the C-terminus of ClC-5.
    Wellhauser L; Kuo HH; Stratford FL; Ramjeesingh M; Huan LJ; Luong W; Li C; Deber CM; Bear CE
    Biochem J; 2006 Sep; 398(2):289-94. PubMed ID: 16686597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human CLC-K Channels Require Palmitoylation of Their Accessory Subunit Barttin to Be Functional.
    Steinke KV; Gorinski N; Wojciechowski D; Todorov V; Guseva D; Ponimaskin E; Fahlke C; Fischer M
    J Biol Chem; 2015 Jul; 290(28):17390-400. PubMed ID: 26013830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1.
    Estévez R; Schroeder BC; Accardi A; Jentsch TJ; Pusch M
    Neuron; 2003 Apr; 38(1):47-59. PubMed ID: 12691663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current.
    Robinson NC; Huang P; Kaetzel MA; Lamb FS; Nelson DJ
    J Physiol; 2004 Apr; 556(Pt 2):353-68. PubMed ID: 14754994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.