These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 19011305)

  • 1. Automatic recognition of pathological phoneme production.
    Wielgat R; Zieliński TP; Woźniak T; Grabias S; Król D
    Folia Phoniatr Logop; 2008; 60(6):323-31. PubMed ID: 19011305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic time warping in phoneme modeling for fast pronunciation error detection.
    Miodonska Z; Bugdol MD; Krecichwost M
    Comput Biol Med; 2016 Feb; 69():277-85. PubMed ID: 26739104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A probabilistic framework for landmark detection based on phonetic features for automatic speech recognition.
    Juneja A; Espy-Wilson C
    J Acoust Soc Am; 2008 Feb; 123(2):1154-68. PubMed ID: 18247915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.
    Darch J; Milner B; Vaseghi S
    J Acoust Soc Am; 2008 Dec; 124(6):3989-4000. PubMed ID: 19206822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability and clinical relevance of segmental analysis based on intelligibility assessment.
    Van Nuffelen G; De Bodt M; Guns C; Wuyts F; Van de Heyning P
    Folia Phoniatr Logop; 2008; 60(5):264-8. PubMed ID: 18781075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical modeling of speech Poincaré sections in combination of frequency analysis to improve speech recognition performance.
    Jafari A; Almasganj F; Bidhendi MN
    Chaos; 2010 Sep; 20(3):033106. PubMed ID: 20887046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting independent filter bandwidth of human factor cepstral coefficients in automatic speech recognition.
    Skowronski MD; Harris JG
    J Acoust Soc Am; 2004 Sep; 116(3):1774-80. PubMed ID: 15478444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Phoneme analysis and phoneme discrimination of juvenile speech therapy school students].
    Franz S; Rosanowski F; Eysholdt U; Hoppe U
    Laryngorhinootologie; 2011 May; 90(5):282-9. PubMed ID: 20941685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sign language recognition by combining statistical DTW and independent classification.
    Lichtenauer JF; Hendriks EA; Reinders MJ
    IEEE Trans Pattern Anal Mach Intell; 2008 Nov; 30(11):2040-6. PubMed ID: 18787250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved phoneme-based myoelectric speech recognition.
    Zhou Q; Jiang N; Englehart K; Hudgins B
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2016-23. PubMed ID: 19535319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static features in real-time recognition of isolated vowels at high pitch.
    Ferreira AJ
    J Acoust Soc Am; 2007 Oct; 122(4):2389-404. PubMed ID: 17902873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of an HMM/ANN hybrid structure in pattern recognition application using cepstral analysis of dysarthric (distorted) speech signals.
    Polur PD; Miller GE
    Med Eng Phys; 2006 Oct; 28(8):741-8. PubMed ID: 16359906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation frequency features for phoneme recognition in noisy speech.
    Ganapathy S; Thomas S; Hermansky H
    J Acoust Soc Am; 2009 Jan; 125(1):EL8-12. PubMed ID: 19173383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonocardiographic signal analysis method using a modified hidden Markov model.
    Wang P; Lim CS; Chauhan S; Foo JY; Anantharaman V
    Ann Biomed Eng; 2007 Mar; 35(3):367-74. PubMed ID: 17171300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoelectric signal classification for phoneme-based speech recognition.
    Scheme EJ; Hudgins B; Parker PA
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):694-9. PubMed ID: 17405376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of phonemic distinction in Japanese preschool children.
    Tamashige E; Nishizawa N; Itoda H; Kasai S; Igawa HH; Fukuda S
    Folia Phoniatr Logop; 2008; 60(6):318-22. PubMed ID: 19011304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonotactic therapy.
    Velleman SL
    Semin Speech Lang; 2002 Feb; 23(1):43-56. PubMed ID: 11938490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer-aided MFCC-based HMM system for automatic auscultation.
    Chauhan S; Wang P; Sing Lim C; Anantharaman V
    Comput Biol Med; 2008 Feb; 38(2):221-33. PubMed ID: 18045582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experiments with fast Fourier transform, linear predictive and cepstral coefficients in dysarthric speech recognition algorithms using hidden Markov Model.
    Polur PD; Miller GE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):558-61. PubMed ID: 16425838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On combining information from modulation spectra and mel-frequency cepstral coefficients for automatic detection of pathological voices.
    Arias-Londoño JD; Godino-Llorente JI; Markaki M; Stylianou Y
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):60-9. PubMed ID: 21073260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.