BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 1901144)

  • 41. Comparison of distortion-product and transient evoked otoacoustic emissions with ABR threshold shift in chinchillas with ototoxic damage.
    Kakigi A; Hirakawa H; Harel N; Mount RJ; Harrison RV
    Auris Nasus Larynx; 1998 Sep; 25(3):223-32. PubMed ID: 9799987
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of compound action potential audiograms with distortion product otoacoustic emissions in experimentally induced hydrops.
    Horner KC
    Eur Arch Otorhinolaryngol; 1991; 248(5):302-7. PubMed ID: 1888509
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Auditory function and hearing loss in children and adults with Williams syndrome: cochlear impairment in individuals with otherwise normal hearing.
    Marler JA; Sitcovsky JL; Mervis CB; Kistler DJ; Wightman FL
    Am J Med Genet C Semin Med Genet; 2010 May; 154C(2):249-65. PubMed ID: 20425785
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitivity of distortion product otoacoustic emissions in noise-exposed chinchillas.
    Davis B; Qiu W; Hamernik RP
    J Am Acad Audiol; 2005 Feb; 16(2):69-78. PubMed ID: 15807046
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spontaneous otoacoustic emissions and sensori-neural hearing loss.
    Moulin A; Collet L; Delli D; Morgon A
    Acta Otolaryngol; 1991; 111(5):835-41. PubMed ID: 1759568
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hearing threshold estimation using concurrent measurement of distortion product otoacoustic emissions and auditory steady-state responses.
    Rosner T; Kandzia F; Oswald JA; Janssen T
    J Acoust Soc Am; 2011 Feb; 129(2):840-51. PubMed ID: 21361442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise.
    Harding GW; Bohne BA; Lee SC; Salt AN
    Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Acoustic distortion products. Recordings from patients with normal hearing and those with sensorineural hearing loss].
    Pérez del Valle B; Morant Ventura A; Contreras Castelló A; Pellicer Pascual F; Marco Algarra J
    Acta Otorrinolaringol Esp; 1993; 44(6):419-23. PubMed ID: 8155355
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Abnormal fast fluctuations of electrocochleography and otoacoustic emissions in Menière's disease.
    Gerenton G; Giraudet F; Djennaoui I; Pavier Y; Gilain L; Mom T; Avan P
    Hear Res; 2015 Sep; 327():199-208. PubMed ID: 26232527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distortion product otoacoustic emmissions in Ménière's disease.
    Cianfrone G; Ralli G; Fabbricatore M; Altissimi G; Nola G
    Scand Audiol; 2000; 29(2):111-9. PubMed ID: 10888348
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amplitude modulation of DPOAEs by acoustic stimulation of the contralateral ear.
    Harrison RV; Sharma A; Brown T; Jiwani S; James AL
    Acta Otolaryngol; 2008 Apr; 128(4):404-7. PubMed ID: 18368574
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrophysiological correlates of progressive sensorineural pathology in carboplatin-treated chinchillas.
    El-Badry MM; McFadden SL
    Brain Res; 2007 Feb; 1134(1):122-30. PubMed ID: 17198689
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distortion product emissions in humans. III. Influence of sensorineural hearing loss.
    Martin GK; Ohlms LA; Franklin DJ; Harris FP; Lonsbury-Martin BL
    Ann Otol Rhinol Laryngol Suppl; 1990 May; 147():30-42. PubMed ID: 2110798
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of low-frequency biasing as a diagnostic tool in Menière patients.
    Hof-Duin NJ; Wit HP
    Hear Res; 2007 Sep; 231(1-2):84-9. PubMed ID: 17658231
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cochlear microphonics in Ménière's disease.
    Ge NN; Shea JJ; Orchik DJ
    Am J Otol; 1997 Jan; 18(1):58-66. PubMed ID: 8989953
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Middle ear and cochlear disorders result in different DPOAE growth behaviour: implications for the differentiation of sound conductive and cochlear hearing loss.
    Gehr DD; Janssen T; Michaelis CE; Deingruber K; Lamm K
    Hear Res; 2004 Jul; 193(1-2):9-19. PubMed ID: 15219315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: a 3-year follow-up study.
    Job A; Raynal M; Kossowski M; Studler M; Ghernaouti C; Baffioni-Venturi A; Roux A; Darolles C; Guelorget A
    Hear Res; 2009 May; 251(1-2):10-6. PubMed ID: 19249340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased otoacoustic-emission amplitude secondary to cochlear lesions.
    Raveh E; Mount RJ; Harrison RV
    J Otolaryngol; 1998 Dec; 27(6):354-60. PubMed ID: 9857322
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for the influence of aging on distortion-product otoacoustic emissions in humans.
    Lonsbury-Martin BL; Cutler WM; Martin GK
    J Acoust Soc Am; 1991 Apr; 89(4 Pt 1):1749-59. PubMed ID: 2045583
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SENS-401 Effectively Reduces Severe Acoustic Trauma-Induced Hearing Loss in Male Rats With Twice Daily Administration Delayed up to 96 hours.
    Petremann M; Romanet C; Broussy A; Van Ba CT; Poli S; Dyhrfjeld-Johnsen J
    Otol Neurotol; 2019 Feb; 40(2):254-263. PubMed ID: 30570608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.