These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 1901144)

  • 101. Evolution of recruitment at different frequencies during the development of endolymphatic hydrops in the guinea pig.
    Horner KC; Cazals Y
    Arch Otorhinolaryngol; 1988; 245(2):103-7. PubMed ID: 3390072
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Otoacoustic emissions in sudden unilateral hearing loss associated with multiple sclerosis.
    Cevette MJ; Robinette MS; Carter J; Knops JL
    J Am Acad Audiol; 1995 May; 6(3):197-202. PubMed ID: 7620195
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Drill-induced hearing loss in the nonoperated ear.
    da Cruz MJ; Fagan P; Atlas M; McNeill C
    Otolaryngol Head Neck Surg; 1997 Nov; 117(5):555-8. PubMed ID: 9374183
    [TBL] [Abstract][Full Text] [Related]  

  • 104. A gerbil model of sloping sensorineural hearing loss.
    Suberman TA; Campbell AP; Adunka OF; Buchman CA; Roche JP; Fitzpatrick DC
    Otol Neurotol; 2011 Jun; 32(4):544-52. PubMed ID: 21389900
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Impediment of basilar membrane motion reduces overload protection but not threshold sensitivity: evidence from clinical and experimental hydrops.
    Braun M
    Hear Res; 1996 Aug; 97(1-2):1-10. PubMed ID: 8844181
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Effectiveness of acoustic reflex threshold criteria in the diagnosis of retrocochlear pathology.
    Prasher D; Cohen M
    Scand Audiol; 1993; 22(1):11-8. PubMed ID: 8465135
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Acoustic middle ear muscle reflex protection against magnetic coil impulse noise.
    Counter SA; Borg E
    Acta Otolaryngol; 1993 Jul; 113(4):483-8. PubMed ID: 8379303
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Chronic excitotoxicity in the guinea pig cochlea induces temporary functional deficits without disrupting otoacoustic emissions.
    Le Prell CG; Yagi M; Kawamoto K; Beyer LA; Atkin G; Raphael Y; Dolan DF; Bledsoe SC; Moody DB
    J Acoust Soc Am; 2004 Aug; 116(2):1044-56. PubMed ID: 15376671
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Interpeak intervals of auditory brainstem response, interaural differences in normal-hearing subjects and patients with sensorineural hearing loss.
    Stürzebecher E; Kevanishvili Z; Werbs M; Meyer E; Schmidt D
    Scand Audiol; 1985; 14(2):83-7. PubMed ID: 4023603
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Measurement of cochlear basilar membrane traveling wave velocity by derived ABR.
    Kim Y; Aoyagi M; Koike Y
    Acta Otolaryngol Suppl; 1994; 511():71-6. PubMed ID: 8203247
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery.
    Henry KS; Heinz MG
    Hear Res; 2013 Sep; 303():39-47. PubMed ID: 23376018
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Individualized Cochlear Models Based on Distortion Product Otoacoustic Emissions.
    Keshishzadeh S; Verhulst S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():403-407. PubMed ID: 34891319
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Pathophysiological mechanisms of hearing loss.
    Sohmer H
    J Basic Clin Physiol Pharmacol; 1997; 8(3):113-25. PubMed ID: 9429980
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Otoacoustic emissions, their origin in cochlear function, and use.
    Kemp DT
    Br Med Bull; 2002; 63():223-41. PubMed ID: 12324396
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Intracochlear distortion products are broadly generated by outer hair cells but their contributions to otoacoustic emissions are spatially restricted.
    Bowling T; Wen H; Meenderink SWF; Dong W; Meaud J
    Sci Rep; 2021 Jul; 11(1):13651. PubMed ID: 34211051
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Modeling distortion product otoacoustic emission input/output functions using segmented regression.
    Goldman B; Sheppard L; Kujawa SG; Seixas NS
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2764-76. PubMed ID: 17139737
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Diagnostic potential of distortion product otoacoustic emissions in severe or profound sensorineural hearing loss.
    Park MS; Lee JH
    Acta Otolaryngol; 1998 Jul; 118(4):496-500. PubMed ID: 9726672
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Acoustic reflex after experimental lesions to inner and outer hair cells.
    Borg E; Engström B
    Hear Res; 1982 Jan; 6(1):25-34. PubMed ID: 7054134
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Cochlear processes affecting wave V latency of the auditory evoked brain stem response. A study of patients with sensory hearing loss.
    Yamada O; Kodera K; Yagi T
    Scand Audiol; 1979; 8(2):67-70. PubMed ID: 515691
    [TBL] [Abstract][Full Text] [Related]  

  • 120. No Effect of Interstimulus Interval on Acoustic Reflex Thresholds.
    Guest H; Munro KJ; Couth S; Millman RE; Prendergast G; Kluk K; Murray C; Plack C
    Trends Hear; 2019; 23():2331216519874165. PubMed ID: 31516095
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.