These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 19011617)

  • 21. The fabrication of Ni quantum cross devices with a 17 nm junction and their current-voltage characteristics.
    Kaiju H; Kondo K; Ono A; Kawaguchi N; Won J; Hirata A; Ishimaru M; Hirotsu Y; Ishibashi A
    Nanotechnology; 2010 Jan; 21(1):015301. PubMed ID: 19946173
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct synthesis of silicon oxide nanowires on organic polymer substrates.
    Yun J; Jeong Y; Lee GH
    Nanotechnology; 2009 Sep; 20(36):365606. PubMed ID: 19687544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resistive switching memory devices based on electrical conductance tuning in poly(4-vinyl phenol)-oxadiazole composites.
    Sun Y; Miao F; Li R; Wen D
    Phys Chem Chem Phys; 2015 Nov; 17(44):29978-84. PubMed ID: 26490192
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasensitive solution-cast quantum dot photodetectors.
    Konstantatos G; Howard I; Fischer A; Hoogland S; Clifford J; Klem E; Levina L; Sargent EH
    Nature; 2006 Jul; 442(7099):180-3. PubMed ID: 16838017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-volatile memory devices based on polystyrene derivatives with electron-donating oligofluorene pendent moieties.
    Liu CL; Hsu JC; Chen WC; Sugiyama K; Hirao A
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1974-9. PubMed ID: 20355822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic effect of terminal acceptor groups on different organic donor-acceptor small-molecule based memory devices.
    Liu H; Zhuang H; Li H; Lu J; Wang L
    Phys Chem Chem Phys; 2014 Aug; 16(32):17125-32. PubMed ID: 25008407
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonvolatile unipolar and bipolar bistable memory characteristics of a high temperature polyimide bearing diphenylaminobenzylidenylimine moieties.
    Kim K; Park S; Hahm SG; Lee TJ; Kim DM; Kim JC; Kwon W; Ko YG; Ree M
    J Phys Chem B; 2009 Jul; 113(27):9143-50. PubMed ID: 19518112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatially organized free-standing poly(p-xylylene) nanowires fabricated by vapor deposition.
    Demirel MC; Boduroglu S; Cetinkaya M; Lakhtakia A
    Langmuir; 2007 May; 23(11):5861-3. PubMed ID: 17465585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As.
    Stolichnov I; Riester SW; Trodahl HJ; Setter N; Rushforth AW; Edmonds KW; Campion RP; Foxon CT; Gallagher BL; Jungwirth T
    Nat Mater; 2008 Jun; 7(6):464-7. PubMed ID: 18454153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonvolatile rewritable memory effects in graphene oxide functionalized by conjugated polymer containing fluorene and carbazole units.
    Zhang B; Liu YL; Chen Y; Neoh KG; Li YX; Zhu CX; Tok ES; Kang ET
    Chemistry; 2011 Sep; 17(37):10304-11. PubMed ID: 21805510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative differential resistance behavior and memory effect in laterally bridged ZnO nanorods grown by hydrothermal method.
    Chuang MY; Chen YC; Su YK; Hsiao CH; Huang CS; Tsai JJ; Yu HC
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5432-8. PubMed ID: 24625268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly stable resistive switching on monocrystalline ZnO.
    Shih A; Zhou W; Qiu J; Yang HJ; Chen S; Mi Z; Shih I
    Nanotechnology; 2010 Mar; 21(12):125201. PubMed ID: 20182012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A direct metal transfer method for cross-bar type polymer non-volatile memory applications.
    Kim TW; Lee K; Oh SH; Wang G; Kim DY; Jung GY; Lee T
    Nanotechnology; 2008 Oct; 19(40):405201. PubMed ID: 21832610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications.
    Wang Y; Liu Q; Long S; Wang W; Wang Q; Zhang M; Zhang S; Li Y; Zuo Q; Yang J; Liu M
    Nanotechnology; 2010 Jan; 21(4):045202. PubMed ID: 20009169
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electromechanical resonators from graphene sheets.
    Bunch JS; van der Zande AM; Verbridge SS; Frank IW; Tanenbaum DM; Parpia JM; Craighead HG; McEuen PL
    Science; 2007 Jan; 315(5811):490-3. PubMed ID: 17255506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices.
    Son DI; Shim JH; Park DH; Jung JH; Lee JM; Park WI; Kim TW; Choi WK
    Nanotechnology; 2011 Jul; 22(29):295203. PubMed ID: 21685558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new approach for two-terminal electronic memory devices - Storing information on silicon nanowires.
    Saranti K; Alotaibi S; Paul S
    Sci Rep; 2016 Jun; 6():27506. PubMed ID: 27279431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications.
    Liao L; Fan HJ; Yan B; Zhang Z; Chen LL; Li BS; Xing GZ; Shen ZX; Wu T; Sun XW; Wang J; Yu T
    ACS Nano; 2009 Mar; 3(3):700-6. PubMed ID: 19249845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices.
    Cheng LJ; Guo LJ
    ACS Nano; 2009 Mar; 3(3):575-84. PubMed ID: 19220010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.