BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19012064)

  • 21. A structural fingertip model for simulating of the biomechanics of tactile sensation.
    Wu JZ; Dong RG; Rakheja S; Schopper AW; Smutz WP
    Med Eng Phys; 2004 Mar; 26(2):165-75. PubMed ID: 15036184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element dynamic analysis of soft tissues using state-space model.
    Iorga LN; Shan B; Pelegri AA
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):197-209. PubMed ID: 19242834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preoperative planning system for surgical robotics setup with kinematics and haptics.
    Hayashibe M; Suzuki N; Hashizume M; Kakeji Y; Konishi K; Suzuki S; Hattori A
    Int J Med Robot; 2005 Jan; 1(2):76-85. PubMed ID: 17518381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanics of soft tissues.
    Miller K
    Med Sci Monit; 2000; 6(1):158-67. PubMed ID: 11208305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of finite element analysis to the design of tissue leaflets for a percutaneous aortic valve.
    Smuts AN; Blaine DC; Scheffer C; Weich H; Doubell AF; Dellimore KH
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):85-98. PubMed ID: 21094482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite-element modeling of soft tissue rolling indentation.
    Sangpradit K; Liu H; Dasgupta P; Althoefer K; Seneviratne LD
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3319-27. PubMed ID: 21257372
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robotic technology in surgery: past, present, and future.
    Camarillo DB; Krummel TM; Salisbury JK
    Am J Surg; 2004 Oct; 188(4A Suppl):2S-15S. PubMed ID: 15476646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and implementation of a control architecture for robot-assisted orthopaedic surgery.
    Barkana DE
    Int J Med Robot; 2010 Mar; 6(1):42-56. PubMed ID: 19943336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo measurement of solid organ visco-elastic properties.
    Ottensmeyer MP
    Stud Health Technol Inform; 2002; 85():328-33. PubMed ID: 15458110
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation.
    Schwartz JM; Denninger M; Rancourt D; Moisan C; Laurendeau D
    Med Image Anal; 2005 Apr; 9(2):103-12. PubMed ID: 15721226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A technical challenge for robot-assisted minimally invasive surgery: precision surgery on soft tissue.
    Stallkamp J; Schraft RD
    Int J Med Robot; 2005 Jan; 1(2):48-52. PubMed ID: 17518378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gaze-contingent control for minimally invasive robotic surgery.
    Mylonas GP; Darzi A; Yang GZ
    Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic characterization of soft tissue from dynamic finite element models.
    Eskandari H; Salcudean SE; Rohling R; Ohayon J
    Phys Med Biol; 2008 Nov; 53(22):6569-90. PubMed ID: 18978443
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laser-scan endoscope system for intraoperative geometry acquisition and surgical robot safety management.
    Hayashibe M; Suzuki N; Nakamura Y
    Med Image Anal; 2006 Aug; 10(4):509-19. PubMed ID: 16624612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction model between capsule robot and intestine based on nonlinear viscoelasticity.
    Zhang C; Liu H; Tan R; Li H
    Proc Inst Mech Eng H; 2014 Mar; 228(3):287-96. PubMed ID: 24525198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo mechanical characterization of human liver.
    Nava A; Mazza E; Furrer M; Villiger P; Reinhart WH
    Med Image Anal; 2008 Apr; 12(2):203-16. PubMed ID: 18171633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surgical robot setup simulation with consistent kinematics and haptics for abdominal surgery.
    Hayashibe M; Suzuki N; Hattori A; Suzuki S; Konishi K; Kakeji Y; Hashizume M
    Stud Health Technol Inform; 2005; 111():164-6. PubMed ID: 15718720
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surgical robotics and image guided therapy in pediatric surgery: emerging and converging minimal access technologies.
    Chandra V; Dutta S; Albanese CT
    Semin Pediatr Surg; 2006 Nov; 15(4):267-75. PubMed ID: 17055957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.