These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Multiple preferred escape trajectories are explained by a geometric model incorporating prey's turn and predator attack endpoint. Kawabata Y; Akada H; Shimatani KI; Nishihara GN; Kimura H; Nishiumi N; Domenici P Elife; 2023 Feb; 12():. PubMed ID: 36790147 [TBL] [Abstract][Full Text] [Related]
4. Escaping away from and towards a threat: the cockroach's strategy for staying alive. Domenici P; Booth D; Blagburn JM; Bacon JP Commun Integr Biol; 2009 Nov; 2(6):497-500. PubMed ID: 20195455 [TBL] [Abstract][Full Text] [Related]
5. A comparison of the escape behaviors of the cockroaches Blaberus craniifer and Periplaneta americana. Simpson BS; Ritzmann RE; Pollack AJ J Neurobiol; 1986 Sep; 17(5):405-19. PubMed ID: 3772361 [TBL] [Abstract][Full Text] [Related]
6. Analyzing cockroach escape behavior with lesions of individual giant interneurons. Comer CM Brain Res; 1985 Jun; 335(2):342-6. PubMed ID: 4005563 [TBL] [Abstract][Full Text] [Related]
10. The shadow response of the cockroach periplaneta americana. Meyer DJ; Margiotta JF; Walcott B J Neurobiol; 1981 Jan; 12(1):93-6. PubMed ID: 7205251 [TBL] [Abstract][Full Text] [Related]
11. Neural responses from the wind-sensitive interneuron population in four cockroach species. McGorry CA; Newman CN; Triblehorn JD J Insect Physiol; 2014 Jul; 66():59-70. PubMed ID: 24879967 [TBL] [Abstract][Full Text] [Related]
12. Learned helplessness in the cockroach (Periplaneta americana). Brown GE; Stroup K Behav Neural Biol; 1988 Sep; 50(2):246-50. PubMed ID: 3228423 [TBL] [Abstract][Full Text] [Related]
13. Behavioral biology: inside the mind of proteus? Comer C Curr Biol; 2009 Jan; 19(1):R27-8. PubMed ID: 19138587 [TBL] [Abstract][Full Text] [Related]
14. The wind-elicited escape response of cockroaches (Periplaneta americana) is influenced by lesions rostral to the escape circuit. Keegan AP; Comer CM Brain Res; 1993 Aug; 620(2):310-6. PubMed ID: 8369964 [TBL] [Abstract][Full Text] [Related]
15. A model of antennal wall-following and escape in the cockroach. Chapman TP; Webb B J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Sep; 192(9):949-69. PubMed ID: 16761132 [TBL] [Abstract][Full Text] [Related]
16. [Central nervous organization of the cercal escape reflex in the cockroach (Periplaneta americana L.). I. Transformation of cercal excitation into leg motor neuron activity]. RĂ¼diger Schlue W Z Tierpsychol; 1974 Feb; 34(2):172-207. PubMed ID: 4842941 [No Abstract] [Full Text] [Related]
17. Learning of leg position by cockroaches in response to light. Harris CL Physiol Behav; 1993 Feb; 53(2):313-6. PubMed ID: 8446693 [TBL] [Abstract][Full Text] [Related]
18. The antennal system and cockroach evasive behavior. I. Roles for visual and mechanosensory cues in the response. Ye S; Leung V; Khan A; Baba Y; Comer CM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):89-96. PubMed ID: 12607037 [TBL] [Abstract][Full Text] [Related]
19. Escape behavior in the cockroach: distributed neural processing. Camhi JM Experientia; 1988 May; 44(5):401-8. PubMed ID: 3371445 [TBL] [Abstract][Full Text] [Related]
20. Wind direction coding in the cockroach escape response: winner does not take all. Levi R; Camhi JM J Neurosci; 2000 May; 20(10):3814-21. PubMed ID: 10804221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]