These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19013123)

  • 1. The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite.
    Atella GC; Bittencourt-Cunha PR; Nunes RD; Shahabuddin M; Silva-Neto MA
    Acta Trop; 2009 Feb; 109(2):159-62. PubMed ID: 19013123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Plasmodium gallinaceum on hemolymph physiology of Aedes aegypti during parasite development.
    Araujo RV; Maciel C; Hartfelder K; Capurro ML
    J Insect Physiol; 2011 Feb; 57(2):265-73. PubMed ID: 21112329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector.
    Vernick KD; Fujioka H; Aikawa M
    Exp Parasitol; 1999 Apr; 91(4):362-6. PubMed ID: 10092481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmodium gallinaceum: fluorescent staining of zygotes and ookinetes to study malaria parasites in mosquito.
    Shahabuddin M; Gayle M; Zieler H; Laughinghouse A
    Exp Parasitol; 1998 Feb; 88(2):79-84. PubMed ID: 9538861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unique specificity of in vitro inhibition of mosquito midgut trypsin-like activity correlates with in vivo inhibition of malaria parasite infectivity.
    Shahabuddin M; Criscio M; Kaslow DC
    Exp Parasitol; 1995 Mar; 80(2):212-9. PubMed ID: 7534722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aedes aegypti SGS1 is critical for Plasmodium gallinaceum infection of both the mosquito midgut and salivary glands.
    Kojin BB; Martin-Martin I; Araújo HRC; Bonilla B; Molina-Cruz A; Calvo E; Capurro ML; Adelman ZN
    Malar J; 2021 Jan; 20(1):11. PubMed ID: 33407511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmodium gallinaceum: differential lysis of two developmental stages of malaria sporozoites by the alternative pathway of complement.
    Touray MG; Seeley DC; Miller LH
    Exp Parasitol; 1994 May; 78(3):294-301. PubMed ID: 8162961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The storage of nutritional resources during vitellogenesis of Panstrongylus megistus (Hemiptera: Reduviidae): the pathways of lipophorin in lipid delivery to developing oocytes.
    Fruttero LL; Frede S; Rubiolo ER; Canavoso LE
    J Insect Physiol; 2011 Apr; 57(4):475-86. PubMed ID: 21277855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins.
    Laino A; Cunningham ML; García F; Heras H
    J Insect Physiol; 2009 Dec; 55(12):1118-24. PubMed ID: 19686754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin.
    Shahabuddin M; Fields I; Bulet P; Hoffmann JA; Miller LH
    Exp Parasitol; 1998 May; 89(1):103-12. PubMed ID: 9603495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector.
    Boëte C; Paul RE; Koella JC
    Proc Biol Sci; 2004 Aug; 271(1548):1611-5. PubMed ID: 15306308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The developmental migration of Plasmodium in mosquitoes.
    Vlachou D; Schlegelmilch T; Runn E; Mendes A; Kafatos FC
    Curr Opin Genet Dev; 2006 Aug; 16(4):384-91. PubMed ID: 16793259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti.
    Cheon HM; Shin SW; Bian G; Park JH; Raikhel AS
    J Biol Chem; 2006 Mar; 281(13):8426-35. PubMed ID: 16449228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A targeted approach to the identification of candidate genes determining susceptibility to Plasmodium gallinaceum in Aedes aegypti.
    Morlais I; Mori A; Schneider JR; Severson DW
    Mol Genet Genomics; 2003 Sep; 269(6):753-64. PubMed ID: 14513362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mosquito--malaria interactions: a reappraisal of the concepts of susceptibility and refractoriness.
    Sinden RE; Alavi Y; Raine JD
    Insect Biochem Mol Biol; 2004 Jul; 34(7):625-9. PubMed ID: 15242703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmodium gallinaceum preferentially invades vesicular ATPase-expressing cells in Aedes aegypti midgut.
    Shahabuddin M; Pimenta PF
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3385-9. PubMed ID: 9520375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The initial stages of the post-sporozoite development of the malarial parasite in the mosquito].
    Chernov IuV; Chumina LM
    Med Parazitol (Mosk); 1988; (4):7-10. PubMed ID: 3193927
    [No Abstract]   [Full Text] [Related]  

  • 18. Lipophorin Drives Lipid Incorporation and Metabolism in Insect Trypanosomatids.
    Ximenes Ados A; Silva-Cardoso L; De Cicco NN; Pereira MG; Lourenço DC; Fampa P; Folly E; Cunha-e-Silva NL; Silva-Neto MA; Atella GC
    Protist; 2015 Jul; 166(3):297-309. PubMed ID: 26017666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salivary gland transcriptome analysis during Plasmodium infection in malaria vector Anopheles stephensi.
    Dixit R; Sharma A; Mourya DT; Kamaraju R; Patole MS; Shouche YS
    Int J Infect Dis; 2009 Sep; 13(5):636-46. PubMed ID: 19128996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic control of malaria parasite transmission: threshold levels for infection in an avian model system.
    Jasinskiene N; Coleman J; Ashikyan A; Salampessy M; Marinotti O; James AA
    Am J Trop Med Hyg; 2007 Jun; 76(6):1072-8. PubMed ID: 17556613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.