These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19013211)

  • 1. Structure-activity relationships of human AKR-type oxidoreductases involved in bile acid synthesis: AKR1D1 and AKR1C4.
    Lee WH; Lukacik P; Guo K; Ugochukwu E; Kavanagh KL; Marsden B; Oppermann U
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):199-204. PubMed ID: 19013211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of human Delta4-3-ketosteroid 5beta-reductase defines the functional role of the residues of the catalytic tetrad in the steroid double bond reduction mechanism.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Aug; 47(32):8261-70. PubMed ID: 18624455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and catalytic mechanism of human steroid 5beta-reductase (AKR1D1).
    Di Costanzo L; Drury JE; Christianson DW; Penning TM
    Mol Cell Endocrinol; 2009 Mar; 301(1-2):191-8. PubMed ID: 18848863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.
    Rižner TL; Penning TM
    Steroids; 2014 Jan; 79():49-63. PubMed ID: 24189185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular docking for substrate identification: the short-chain dehydrogenases/reductases.
    Favia AD; Nobeli I; Glaser F; Thornton JM
    J Mol Biol; 2008 Jan; 375(3):855-74. PubMed ID: 18036612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate of steroid double-bond reduction catalysed by the human steroid 5β-reductase (AKR1D1) is sensitive to steroid structure: implications for steroid metabolism and bile acid synthesis.
    Jin Y; Chen M; Penning TM
    Biochem J; 2014 Aug; 462(1):163-71. PubMed ID: 24894951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Depth Dissection of the P133R Mutation in Steroid 5β-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency.
    Chen M; Jin Y; Penning TM
    Biochemistry; 2015 Oct; 54(41):6343-51. PubMed ID: 26418565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate specificity and inhibitor analyses of human steroid 5β-reductase (AKR1D1).
    Chen M; Drury JE; Penning TM
    Steroids; 2011 Apr; 76(5):484-90. PubMed ID: 21255593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of disease associated point mutations on 5β-reductase (AKR1D1) enzyme function.
    Mindnich R; Drury JE; Penning TM
    Chem Biol Interact; 2011 May; 191(1-3):250-4. PubMed ID: 21185810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major.
    Mukhopadhyay R; Bisacchi D; Zhou Y; Armirotti A; Bordo D
    J Mol Biol; 2009 Mar; 386(5):1229-39. PubMed ID: 18687336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity.
    Lewis DF; Ito Y
    Xenobiotica; 2009 Aug; 39(8):625-35. PubMed ID: 19514836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steroid 5β-reductase (AKR1D1): Purification and characterization.
    Penning TM
    Methods Enzymol; 2023; 689():277-301. PubMed ID: 37802574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the G225P/G226P mutant of mouse 3(17)alpha-hydroxysteroid dehydrogenase (AKR1C21) ternary complex: implications for the binding of inhibitor and substrate.
    Dhagat U; Endo S; Mamiya H; Hara A; El-Kabbani O
    Acta Crystallogr D Biol Crystallogr; 2009 Mar; 65(Pt 3):257-65. PubMed ID: 19237748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures.
    Liao SJ; Yang CY; Chin KH; Wang AH; Chou SH
    J Mol Biol; 2009 Jul; 390(5):951-66. PubMed ID: 19477183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activities of aldo-keto reductase 1 enzymes on two inhaled corticosteroids: implications for the pharmacological effects of inhaled corticosteroids.
    Jin Y
    Chem Biol Interact; 2011 May; 191(1-3):234-8. PubMed ID: 21276783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rate-determining steps of aldo-keto reductases (AKRs), a study on human steroid 5β-reductase (AKR1D1).
    Chen M; Jin Y; Penning TM
    Chem Biol Interact; 2015 Jun; 234():360-5. PubMed ID: 25500266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Functional Biology of Aldo-Keto Reductase Steroid-Transforming Enzymes.
    Penning TM; Wangtrakuldee P; Auchus RJ
    Endocr Rev; 2019 Apr; 40(2):447-475. PubMed ID: 30137266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5β-Reduced steroids and human Δ(4)-3-ketosteroid 5β-reductase (AKR1D1).
    Chen M; Penning TM
    Steroids; 2014 May; 83():17-26. PubMed ID: 24513054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.