BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

625 related articles for article (PubMed ID: 19013472)

  • 1. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.
    González-Segura L; Rudiño-Piñera E; Muñoz-Clares RA; Horjales E
    J Mol Biol; 2009 Jan; 385(2):542-57. PubMed ID: 19013472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and biochemical investigations of the catalytic mechanism of an NADP-dependent aldehyde dehydrogenase from Streptococcus mutans.
    Cobessi D; Tête-Favier F; Marchal S; Branlant G; Aubry A
    J Mol Biol; 2000 Jun; 300(1):141-52. PubMed ID: 10864505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disulfiram irreversibly aggregates betaine aldehyde dehydrogenase--a potential target for antimicrobial agents against Pseudomonas aeruginosa.
    Velasco-García R; Zaldívar-Machorro VJ; Mújica-Jiménez C; González-Segura L; Muñoz-Clares RA
    Biochem Biophys Res Commun; 2006 Mar; 341(2):408-15. PubMed ID: 16426571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel NADPH-cysteine covalent adduct found in the active site of an aldehyde dehydrogenase.
    Díaz-Sánchez AG; González-Segura L; Rudiño-Piñera E; Lira-Rocha A; Torres-Larios A; Muñoz-Clares RA
    Biochem J; 2011 Nov; 439(3):443-52. PubMed ID: 21732915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of the catalytic cysteine of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa with arsenite-BAL and phenylarsine oxide.
    González-Segura L; Mújica-Jiménez C; Muñoz-Clares RA
    Chem Biol Interact; 2009 Mar; 178(1-3):64-9. PubMed ID: 19028474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The disulfiram metabolites S-methyl-N,N-diethyldithiocarbamoyl sulfoxide and S-methyl-N,N-diethylthiocarbamoyl sulfone irreversibly inactivate betaine aldehyde dehydrogenase from Pseudomonas aeruginosa, both in vitro and in situ, and arrest bacterial growth.
    Zaldívar-Machorro VJ; López-Ortiz M; Demare P; Regla I; Muñoz-Clares RA
    Biochimie; 2011 Feb; 93(2):286-95. PubMed ID: 20933050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical characterization of a novel aldehyde dehydrogenase encoded by the benzoate oxidation pathway in Burkholderia xenovorans LB400.
    Bains J; Boulanger MJ
    J Mol Biol; 2008 Jun; 379(3):597-608. PubMed ID: 18462753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt.
    Velasco-García R; Villalobos MA; Ramírez-Romero MA; Mújica-Jiménez C; Iturriaga G; Muñoz-Clares RA
    Arch Microbiol; 2006 Mar; 185(1):14-22. PubMed ID: 16315011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A crystallographic comparison between mutated glyceraldehyde-3-phosphate dehydrogenases from Bacillus stearothermophilus complexed with either NAD+ or NADP+.
    Didierjean C; Rahuel-Clermont S; Vitoux B; Dideberg O; Branlant G; Aubry A
    J Mol Biol; 1997 May; 268(4):739-59. PubMed ID: 9175858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The first crystal structure of a thioacylenzyme intermediate in the ALDH family: new coenzyme conformation and relevance to catalysis.
    D'Ambrosio K; Pailot A; Talfournier F; Didierjean C; Benedetti E; Aubry A; Branlant G; Corbier C
    Biochemistry; 2006 Mar; 45(9):2978-86. PubMed ID: 16503652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crystal structure of d-glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Methanothermus fervidus in the presence of NADP(+) at 2.1 A resolution.
    Charron C; Talfournier F; Isupov MN; Littlechild JA; Branlant G; Vitoux B; Aubry A
    J Mol Biol; 2000 Mar; 297(2):481-500. PubMed ID: 10715215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: implications for the catalytic mechanism of aldehyde dehydrogenases.
    Tsybovsky Y; Donato H; Krupenko NI; Davies C; Krupenko SA
    Biochemistry; 2007 Mar; 46(11):2917-29. PubMed ID: 17302434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium and ionic strength effects on the conformational and thermal stability of two aldehyde dehydrogenases reveal structural and functional roles of K⁺-binding sites.
    Garza-Ramos G; Mújica-Jiménez C; Muñoz-Clares RA
    PLoS One; 2013; 8(1):e54899. PubMed ID: 23365686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability.
    Karlström M; Stokke R; Steen IH; Birkeland NK; Ladenstein R
    J Mol Biol; 2005 Jan; 345(3):559-77. PubMed ID: 15581899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Basis of allosteric regulation and substrate specificity of the non-phosphorylating glyceraldehyde 3-Phosphate dehydrogenase from Thermoproteus tenax.
    Lorentzen E; Hensel R; Knura T; Ahmed H; Pohl E
    J Mol Biol; 2004 Aug; 341(3):815-28. PubMed ID: 15288789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the non-regulatory A(4 )isoform of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase complexed with NADP.
    Fermani S; Ripamonti A; Sabatino P; Zanotti G; Scagliarini S; Sparla F; Trost P; Pupillo P
    J Mol Biol; 2001 Nov; 314(3):527-42. PubMed ID: 11846565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of N-acetyl-gamma-glutamyl-phosphate reductase from Mycobacterium tuberculosis in complex with NADP(+).
    Cherney LT; Cherney MM; Garen CR; Niu C; Moradian F; James MN
    J Mol Biol; 2007 Apr; 367(5):1357-69. PubMed ID: 17316682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases.
    Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW
    J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of the class D beta-lactamase OXA-13 in the native form and in complex with meropenem.
    Pernot L; Frénois F; Rybkine T; L'Hermite G; Petrella S; Delettré J; Jarlier V; Collatz E; Sougakoff W
    J Mol Biol; 2001 Jul; 310(4):859-74. PubMed ID: 11453693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis and homology modeling indicate an important role of cysteine 439 in the stability of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
    González-Segura L; Velasco-García R; Rudiño-Piñera E; Mújica-Jiménez C; Muñoz-Clares RA
    Biochimie; 2005 Dec; 87(12):1056-64. PubMed ID: 16054744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.