These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 19013520)
1. Inhibitory effects of 2,6-di-O-methyl-alpha-cyclodextrin on poly I:C signaling in macrophages. Motoyama K; Hashimoto Y; Hirayama F; Uekama K; Arima H Eur J Pharm Sci; 2009 Feb; 36(2-3):285-91. PubMed ID: 19013520 [TBL] [Abstract][Full Text] [Related]
2. Involvement of CD14 in the inhibitory effects of dimethyl-alpha-cyclodextrin on lipopolysaccharide signaling in macrophages. Motoyama K; Arima H; Nishimoto Y; Miyake K; Hirayama F; Uekama K FEBS Lett; 2005 Mar; 579(7):1707-14. PubMed ID: 15757665 [TBL] [Abstract][Full Text] [Related]
3. Involvement of PI3K-Akt-Bad pathway in apoptosis induced by 2,6-di-O-methyl-beta-cyclodextrin, not 2,6-di-O-methyl-alpha-cyclodextrin, through cholesterol depletion from lipid rafts on plasma membranes in cells. Motoyama K; Kameyama K; Onodera R; Araki N; Hirayama F; Uekama K; Arima H Eur J Pharm Sci; 2009 Oct; 38(3):249-61. PubMed ID: 19664706 [TBL] [Abstract][Full Text] [Related]
4. Inhibitory effects of novel hydrophilic cyclodextrin derivatives on nitric oxide production in macrophages stimulated with lipopolysaccharide. Arima H; Nishimoto Y; Motoyama K; Hirayama F; Uekama K Pharm Res; 2001 Aug; 18(8):1167-73. PubMed ID: 11587489 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory effects of dimethylacetyl-beta-cyclodextrin on lipopolysaccharide-induced macrophage activation and endotoxin shock in mice. Arima H; Motoyama K; Matsukawa A; Nishimoto Y; Hirayama F; Uekama K Biochem Pharmacol; 2005 Nov; 70(10):1506-17. PubMed ID: 16214116 [TBL] [Abstract][Full Text] [Related]
6. Effect of 2,6-di-O-methyl-alpha-cyclodextrin on hemolysis and morphological change in rabbit's red blood cells. Motoyama K; Arima H; Toyodome H; Irie T; Hirayama F; Uekama K Eur J Pharm Sci; 2006 Oct; 29(2):111-9. PubMed ID: 16870405 [TBL] [Abstract][Full Text] [Related]
7. Carbon monoxide from CORM-2 reduces HMGB1 release through regulation of IFN-β/JAK2/STAT-1/INOS/NO signaling but not COX-2 in TLR-activated macrophages. Tsoyi K; Nizamutdinova IT; Jang HJ; Mun L; Kim HJ; Seo HG; Lee JH; Chang KC Shock; 2010 Dec; 34(6):608-14. PubMed ID: 20442692 [TBL] [Abstract][Full Text] [Related]
8. The release of microparticles by RAW 264.7 macrophage cells stimulated with TLR ligands. Gauley J; Pisetsky DS J Leukoc Biol; 2010 Jun; 87(6):1115-23. PubMed ID: 20335312 [TBL] [Abstract][Full Text] [Related]
9. Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway. Jiang Q; Wei H; Tian Z BMC Cancer; 2008 Jan; 8():12. PubMed ID: 18199340 [TBL] [Abstract][Full Text] [Related]
10. CpG oligodeoxynucleotide and double-stranded RNA synergize to enhance nitric oxide production and mRNA expression of inducible nitric oxide synthase, pro-inflammatory cytokines and chemokines in chicken monocytes. He H; MacKinnon KM; Genovese KJ; Kogut MH Innate Immun; 2011 Apr; 17(2):137-44. PubMed ID: 20083501 [TBL] [Abstract][Full Text] [Related]
11. Vasoactive intestinal peptide inhibits toll-like receptor 3-induced nitric oxide production in Schwann cells and subsequent sensory neuronal cell death in vitro. Lee H; Park K; Kim JS; Lee SJ J Neurosci Res; 2009 Jan; 87(1):171-8. PubMed ID: 18683246 [TBL] [Abstract][Full Text] [Related]
12. Synergy of CpG oligodeoxynucleotide and double-stranded RNA (poly I:C) on nitric oxide induction in chicken peripheral blood monocytes. He H; Genovese KJ; Nisbet DJ; Kogut MH Mol Immunol; 2007 May; 44(12):3234-42. PubMed ID: 17339052 [TBL] [Abstract][Full Text] [Related]
13. Effects of dendrimer/cyclodextrin conjugates as gene transfer carriers on nitric oxide production from macrophages. Motoyama K; Sako A; Ibrahim Abu Hashim I; Higashi T; Arima H J Pharm Pharmacol; 2016 May; 68(5):598-607. PubMed ID: 26076676 [TBL] [Abstract][Full Text] [Related]
14. Effect of three herbal extracts on NO and PGE2 production by activated mouse macrophage-like cells. Chu Q; Hashimoto K; Satoh K; Wang Q; Sakagami H In Vivo; 2009; 23(4):537-44. PubMed ID: 19567387 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of NO production in LPS-stimulated mouse macrophage-like cells by benzo[b]cyclohept[e] [1,4]oxazine and 2-aminotropone derivatives. Suga A; Narita T; Zhou L; Sakagami H; Satoh K; Wakabayashi H In Vivo; 2009; 23(5):691-7. PubMed ID: 19779102 [TBL] [Abstract][Full Text] [Related]
16. Toll-like receptor 9-mediated cytosolic phospholipase A2 activation regulates expression of inducible nitric oxide synthase. Lee SH; Lee JG; Kim JR; Baek SH Biochem Biophys Res Commun; 2007 Dec; 364(4):996-1001. PubMed ID: 18273445 [TBL] [Abstract][Full Text] [Related]
17. Bis-(3-hydroxyphenyl) diselenide inhibits LPS-stimulated iNOS and COX-2 expression in RAW 264.7 macrophage cells through the NF-kappaB inactivation. Shin KM; Shen L; Park SJ; Jeong JH; Lee KT J Pharm Pharmacol; 2009 Apr; 61(4):479-86. PubMed ID: 19298695 [TBL] [Abstract][Full Text] [Related]
18. Effect of dominant negative transforming growth factor-beta receptor type II on cytotoxic activity of RAW 264.7, a murine macrophage cell line. Lee GT; Hong JH; Kwak C; Woo J; Liu V; Lee C; Kim IY Cancer Res; 2007 Jul; 67(14):6717-24. PubMed ID: 17638882 [TBL] [Abstract][Full Text] [Related]
19. Effects of dexmedetomidine on regulating endotoxin-induced up-regulation of inflammatory molecules in murine macrophages. Lai YC; Tsai PS; Huang CJ J Surg Res; 2009 Jun; 154(2):212-9. PubMed ID: 19181340 [TBL] [Abstract][Full Text] [Related]
20. CEL-I, an N-acetylgalactosamine (GalNAc)-specific C-type lectin, induces nitric oxide production in RAW264.7 mouse macrophage cell line. Yamanishi T; Hatakeyama T; Yamaguchi K; Oda T J Biochem; 2009 Aug; 146(2):209-17. PubMed ID: 19351706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]