These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19013536)

  • 1. Translating biochemical network models between different kinetic formats.
    Hadlich F; Noack S; Wiechert W
    Metab Eng; 2009 Mar; 11(2):87-100. PubMed ID: 19013536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics.
    Visser D; Heijnen JJ
    Metab Eng; 2003 Jul; 5(3):164-76. PubMed ID: 12948750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks.
    Dräger A; Hassis N; Supper J; Schröder A; Zell A
    BMC Syst Biol; 2008 Apr; 2():39. PubMed ID: 18447902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics.
    Nikerel IE; van Winden WA; Verheijen PJ; Heijnen JJ
    Metab Eng; 2009 Jan; 11(1):20-30. PubMed ID: 18718548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.
    Ciliberto A; Capuani F; Tyson JJ
    PLoS Comput Biol; 2007 Mar; 3(3):e45. PubMed ID: 17367203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges to be faced in the reconstruction of metabolic networks from public databases.
    Poolman MG; Bonde BK; Gevorgyan A; Patel HH; Fell DA
    Syst Biol (Stevenage); 2006 Sep; 153(5):379-84. PubMed ID: 16986322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics.
    Nikerel IE; van Winden WA; van Gulik WM; Heijnen JJ
    BMC Bioinformatics; 2006 Dec; 7():540. PubMed ID: 17184531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dizzy: stochastic simulation of large-scale genetic regulatory networks.
    Ramsey S; Orrell D; Bolouri H
    J Bioinform Comput Biol; 2005 Apr; 3(2):415-36. PubMed ID: 15852513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An energetic reformulation of kinetic rate laws enables scalable parameter estimation for biochemical networks.
    C Mason J; W Covert M
    J Theor Biol; 2019 Jan; 461():145-156. PubMed ID: 30365946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
    Lebiedz D; Kammerer J; Brandt-Pollmann U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041911. PubMed ID: 16383424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico simulation of biological network dynamics.
    Salwinski L; Eisenberg D
    Nat Biotechnol; 2004 Aug; 22(8):1017-9. PubMed ID: 15235611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.
    Ismail AM; Mohamad MS; Abdul Majid H; Abas KH; Deris S; Zaki N; Mohd Hashim SZ; Ibrahim Z; Remli MA
    Biosystems; 2017 Dec; 162():81-89. PubMed ID: 28951204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of Ensemble Models Predicts Productivity of Enzymatic Systems.
    Theisen MK; Lafontaine Rivera JG; Liao JC
    PLoS Comput Biol; 2016 Mar; 12(3):e1004800. PubMed ID: 26963521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a global metabolic network to curate organismal metabolic networks.
    Pah AR; Guimerà R; Mustoe AM; Amaral LA
    Sci Rep; 2013; 3():1695. PubMed ID: 23603845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolica: a statistical research tool for analyzing metabolic networks.
    Heino J; Calvetti D; Somersalo E
    Comput Methods Programs Biomed; 2010 Feb; 97(2):151-67. PubMed ID: 19748150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid approach for efficient and robust parameter estimation in biochemical pathways.
    Rodriguez-Fernandez M; Mendes P; Banga JR
    Biosystems; 2006; 83(2-3):248-65. PubMed ID: 16236429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics.
    Visser D; Schmid JW; Mauch K; Reuss M; Heijnen JJ
    Metab Eng; 2004 Oct; 6(4):378-90. PubMed ID: 15491866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.