These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 19013700)

  • 21. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review.
    Konstantinou IK; Albanis TA
    Environ Int; 2004 Apr; 30(2):235-48. PubMed ID: 14749112
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaching of zinc from tire wear particles under simulated estuarine conditions.
    Degaffe FS; Turner A
    Chemosphere; 2011 Oct; 85(5):738-43. PubMed ID: 21737116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioaccessibility and bioavailability of Cu and Zn in sediment contaminated by antifouling paint residues.
    Turner A; Singh N; Millard L
    Environ Sci Technol; 2008 Dec; 42(23):8740-6. PubMed ID: 19192791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England.
    Zhou JL
    Sci Total Environ; 2008 Nov; 406(1-2):239-46. PubMed ID: 18789489
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Marine pollution from antifouling paint particles.
    Turner A
    Mar Pollut Bull; 2010 Feb; 60(2):159-71. PubMed ID: 20060546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: application to model antifouling coatings.
    Goodes LR; Dennington SP; Schuppe H; Wharton JA; Bakker M; Klijnstra JW; Stokes KR
    Biofouling; 2012; 28(6):613-25. PubMed ID: 22715934
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading.
    Hatje V; Payne TE; Hill DM; McOrist G; Birch GF; Szymczak R
    Environ Int; 2003 Aug; 29(5):619-29. PubMed ID: 12742405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.
    Ytreberg E; Bighiu MA; Lundgren L; Eklund B
    Environ Pollut; 2016 Jun; 213():594-599. PubMed ID: 27016611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical contamination of a coral reef by the grounding of a cruise ship in Bermuda.
    Jones RJ
    Mar Pollut Bull; 2007 Jul; 54(7):905-11. PubMed ID: 17467745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antifouling coatings and ecological control in marinas.
    Cognetti G; Maltagliati F; Pretti C
    Mar Pollut Bull; 2012 Feb; 64(2):175-6. PubMed ID: 22067071
    [No Abstract]   [Full Text] [Related]  

  • 31. [A two-stage technology for bacterial and chemical leaching of copper-zinc raw materials by Fe3+ ions with their subsequent regeneration by chemolithotrophic bacteria].
    Fomchenko NV; Biriukov VV
    Prikl Biokhim Mikrobiol; 2009; 45(1):64-9. PubMed ID: 19235511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of marine antifouling paint particles waste on survival of natural Bermuda copepod communities.
    Molino C; Angeletti D; Oldham VE; Goodbody-Gringley G; Buck KN
    Mar Pollut Bull; 2019 Dec; 149():110492. PubMed ID: 31437615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental risks associated with booster biocides leaching from spent anti-fouling paint particles in coastal environments.
    Hasan CK; Turner A; Readman J; Frickers T
    Water Environ Res; 2014 Dec; 86(12):2330-7. PubMed ID: 25654936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism.
    Katranitsas A; Castritsi-Catharios J; Persoone G
    Mar Pollut Bull; 2003 Nov; 46(11):1491-4. PubMed ID: 14607547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antifouling paint particles in intertidal estuarine sediments from southwest England and their ingestion by the harbour ragworm, Hediste diversicolor.
    Muller-Karanassos C; Turner A; Arundel W; Vance T; Lindeque PK; Cole M
    Environ Pollut; 2019 Jun; 249():163-170. PubMed ID: 30884395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flawed risk assessment of antifouling paints leads to exceedance of guideline values in Baltic Sea marinas.
    Lagerström M; Ferreira J; Ytreberg E; Eriksson-Wiklund AK
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):27674-27687. PubMed ID: 32394257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conceptual issues in designing a policy to phase out metal-based antifouling paints on recreational boats in San Diego Bay.
    Carson RT; Damon M; Johnson LT; Gonzalez JA
    J Environ Manage; 2009 Jun; 90(8):2460-8. PubMed ID: 19376635
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The environmental fate and effects of antifouling paint biocides.
    Thomas KV; Brooks S
    Biofouling; 2010 Jan; 26(1):73-88. PubMed ID: 20390558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cu and Zn mobilization in soil columns percolated by different irrigation solutions.
    Zhao LY; Schulin R; Nowack B
    Environ Pollut; 2009 Mar; 157(3):823-33. PubMed ID: 19111374
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The leaching of lead from lead-based paint in landfill environments.
    Wadanambi L; Dubey B; Townsend T
    J Hazard Mater; 2008 Aug; 157(1):194-200. PubMed ID: 18276069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.