BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19013793)

  • 1. Synthesis and structure-activity relationships of oxamyl dipeptide caspase inhibitors developed for the treatment of liver disease.
    Ueno H; Kawai M; Shimokawa H; Hirota M; Ohmi M; Sudo R; Ohta A; Arano Y; Hattori K; Ohmi T; Kato N; Kojima M; Ueno Y; Yamamoto M; Moriguchi Y; Eda H; Masubuchi K
    Bioorg Med Chem Lett; 2009 Jan; 19(1):199-202. PubMed ID: 19013793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-in-class pan caspase inhibitor developed for the treatment of liver disease.
    Linton SD; Aja T; Armstrong RA; Bai X; Chen LS; Chen N; Ching B; Contreras P; Diaz JL; Fisher CD; Fritz LC; Gladstone P; Groessl T; Gu X; Herrmann J; Hirakawa BP; Hoglen NC; Jahangiri KG; Kalish VJ; Karanewsky DS; Kodandapani L; Krebs J; McQuiston J; Meduna SP; Nalley K; Robinson ED; Sayers RO; Sebring K; Spada AP; Ternansky RJ; Tomaselli KJ; Ullman BR; Valentino KL; Weeks S; Winn D; Wu JC; Yeo P; Zhang CZ
    J Med Chem; 2005 Nov; 48(22):6779-82. PubMed ID: 16250635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipeptidyl aspartyl fluoromethylketones as potent caspase inhibitors: peptidomimetic replacement of the P2 alpha-amino acid by a alpha-hydroxy acid.
    Wang Y; Guan L; Jia S; Tseng B; Drewe J; Cai SX
    Bioorg Med Chem Lett; 2005 Mar; 15(5):1379-83. PubMed ID: 15713391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxamyl dipeptide caspase inhibitors developed for the treatment of stroke.
    Linton SD; Aja T; Allegrini PR; Deckwerth TL; Diaz JL; Hengerer B; Herrmann J; Jahangiri KG; Kallen J; Karanewsky DS; Meduna SP; Nalley K; Robinson ED; Roggo S; Rovelli G; Sauter A; Sayers RO; Schmitz A; Smidt R; Ternansky RJ; Tomaselli KJ; Ullman BR; Wiessner C; Wu JC
    Bioorg Med Chem Lett; 2004 May; 14(10):2685-91. PubMed ID: 15109679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationships within a series of caspase inhibitors. Part 2: Heterocyclic warheads.
    Ullman BR; Aja T; Chen N; Diaz JL; Gu X; Herrmann J; Kalish VJ; Karanewsky DS; Kodandapani L; Krebs JJ; Linton SD; Meduna SP; Nalley K; Robinson ED; Roggo SP; Sayers RO; Schmitz A; Ternansky RJ; Tomaselli KJ; Wu JC
    Bioorg Med Chem Lett; 2005 Aug; 15(15):3632-6. PubMed ID: 15964758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes.
    Berger AB; Witte MD; Denault JB; Sadaghiani AM; Sexton KM; Salvesen GS; Bogyo M
    Mol Cell; 2006 Aug; 23(4):509-21. PubMed ID: 16916639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and structure-activity relationship of 4-substituted 2-(2-acetyloxyethyl)-8-(morpholine-4-sulfonyl)pyrrolo[3,4-c]quinoline-1,3-diones as potent caspase-3 inhibitors.
    Kravchenko DV; Kuzovkova YA; Kysil VM; Tkachenko SE; Maliarchouk S; Okun IM; Balakin KV; Ivachtchenko AV
    J Med Chem; 2005 Jun; 48(11):3680-3. PubMed ID: 15916416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening for caspase-3 inhibitors: a new class of potent small-molecule inhibitors of caspase-3.
    Okun I; Malarchuk S; Dubrovskaya E; Khvat A; Tkachenko S; Kysil V; Ilyin A; Kravchenko D; Prossnitz ER; Sklar L; Ivachtchenko A
    J Biomol Screen; 2006 Apr; 11(3):277-85. PubMed ID: 16490769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, synthesis, and biological evaluation of isoquinoline-1,3,4-trione derivatives as potent caspase-3 inhibitors.
    Chen YH; Zhang YH; Zhang HJ; Liu DZ; Gu M; Li JY; Wu F; Zhu XZ; Li J; Nan FJ
    J Med Chem; 2006 Mar; 49(5):1613-23. PubMed ID: 16509578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback regulation of mitochondria by caspase-9 in the B cell receptor-mediated apoptosis.
    Eeva J; Nuutinen U; Ropponen A; Mättö M; Eray M; Pellinen R; Wahlfors J; Pelkonen J
    Scand J Immunol; 2009 Dec; 70(6):574-83. PubMed ID: 19906200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cell-permeable inhibitor and activity-based probe for the caspase-like activity of the proteasome.
    van Swieten PF; Samuel E; Hernández RO; van den Nieuwendijk AM; Leeuwenburgh MA; van der Marel GA; Kessler BM; Overkleeft HS; Kisselev AF
    Bioorg Med Chem Lett; 2007 Jun; 17(12):3402-5. PubMed ID: 17442566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel pyrazinone mono-amides as potent and reversible caspase-3 inhibitors.
    Han Y; Giroux A; Colucci J; Bayly CI; Mckay DJ; Roy S; Xanthoudakis S; Vaillancourt J; Rasper DM; Tam J; Tawa P; Nicholson DW; Zamboni RJ
    Bioorg Med Chem Lett; 2005 Feb; 15(4):1173-80. PubMed ID: 15686936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhein inhibits TNF-alpha-induced human aortic smooth muscle cell proliferation via mitochondrial-dependent apoptosis.
    Heo SK; Yun HJ; Park WH; Park SD
    J Vasc Res; 2009; 46(4):375-86. PubMed ID: 19142017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine cathepsins and caspases in silicosis.
    Lalmanach G; Diot E; Godat E; Lecaille F; Hervé-Grépinet V
    Biol Chem; 2006 Jul; 387(7):863-70. PubMed ID: 16913835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some commonly used caspase substrates and inhibitors lack the specificity required to monitor individual caspase activity.
    Pereira NA; Song Z
    Biochem Biophys Res Commun; 2008 Dec; 377(3):873-7. PubMed ID: 18976637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caspase inhibitors: viral, cellular and chemical.
    Callus BA; Vaux DL
    Cell Death Differ; 2007 Jan; 14(1):73-8. PubMed ID: 16946729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent and selective nonpeptide inhibitors of caspases 3 and 7.
    Lee D; Long SA; Murray JH; Adams JL; Nuttall ME; Nadeau DP; Kikly K; Winkler JD; Sung CM; Ryan MD; Levy MA; Keller PM; DeWolf WE
    J Med Chem; 2001 Jun; 44(12):2015-26. PubMed ID: 11384246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bovine ephemeral fever virus-induced apoptosis requires virus gene expression and activation of Fas and mitochondrial signaling pathway.
    Lin CH; Shih WL; Lin FL; Hsieh YC; Kuo YR; Liao MH; Liu HJ
    Apoptosis; 2009 Jul; 14(7):864-77. PubMed ID: 19521777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic deletion of faim reveals its role in modulating c-FLIP expression during CD95-mediated apoptosis of lymphocytes and hepatocytes.
    Huo J; Xu S; Guo K; Zeng Q; Lam KP
    Cell Death Differ; 2009 Jul; 16(7):1062-70. PubMed ID: 19300454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of mitochondrial signaling pathways in the mechanism of Fas-mediated apoptosis after spinal cord injury.
    Yu WR; Liu T; Fehlings TK; Fehlings MG
    Eur J Neurosci; 2009 Jan; 29(1):114-31. PubMed ID: 19120440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.