BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19013796)

  • 21. A computational study of the binding of 3-(arylidene) anabaseines to two major brain nicotinic acetylcholine receptors and to the acetylcholine binding protein.
    Slavov SH; Radzvilovits M; LeFrancois S; Stoyanova-Slavova IB; Soti F; Kem WR; Katritzky AR
    Eur J Med Chem; 2010 Jun; 45(6):2433-46. PubMed ID: 20236734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular dissection of subunit interfaces in the nicotinic acetylcholine receptor.
    Sine SM; Bren N; Quiram PA
    J Physiol Paris; 1998 Apr; 92(2):101-5. PubMed ID: 9782451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Presence of multiple binding sites on α9α10 nAChR receptors alludes to stoichiometric-dependent action of the α-conotoxin, Vc1.1.
    Indurthi DC; Pera E; Kim HL; Chu C; McLeod MD; McIntosh JM; Absalom NL; Chebib M
    Biochem Pharmacol; 2014 May; 89(1):131-40. PubMed ID: 24548457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function.
    Boffi JC; Marcovich I; Gill-Thind JK; Corradi J; Collins T; Lipovsek MM; Moglie M; Plazas PV; Craig PO; Millar NS; Bouzat C; Elgoyhen AB
    Mol Pharmacol; 2017 Mar; 91(3):250-262. PubMed ID: 28069778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Docking to flexible nicotinic acetylcholine receptors: a validation study using the acetylcholine binding protein.
    Sander T; Bruun AT; Balle T
    J Mol Graph Model; 2010 Nov; 29(3):415-24. PubMed ID: 20884263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors.
    Tsetlin V; Utkin Y; Kasheverov I
    Biochem Pharmacol; 2009 Oct; 78(7):720-31. PubMed ID: 19501053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR.
    Ellison M; Haberlandt C; Gomez-Casati ME; Watkins M; Elgoyhen AB; McIntosh JM; Olivera BM
    Biochemistry; 2006 Feb; 45(5):1511-7. PubMed ID: 16445293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling of full-length human alpha4beta2 nicotinic receptor by fragmental approach and analysis of its binding modes.
    Pedretti A; Marconi C; Bolchi C; Fumagalli L; Ferrara R; Pallavicini M; Valoti E; Vistoli G
    Biochem Biophys Res Commun; 2008 May; 369(2):648-53. PubMed ID: 18302933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The three-dimensional structure of the analgesic alpha-conotoxin, RgIA.
    Clark RJ; Daly NL; Halai R; Nevin ST; Adams DJ; Craik DJ
    FEBS Lett; 2008 Mar; 582(5):597-602. PubMed ID: 18242183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loop 3 of short neurotoxin II is an additional interaction site with membrane-bound nicotinic acetylcholine receptor as detected by solid-state NMR spectroscopy.
    Krabben L; van Rossum BJ; Jehle S; Bocharov E; Lyukmanova EN; Schulga AA; Arseniev A; Hucho F; Oschkinat H
    J Mol Biol; 2009 Jul; 390(4):662-71. PubMed ID: 19447114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational evidence for the ligand selectivity to the alpha4beta2 and alpha3beta4 nicotinic acetylcholine receptors.
    Yuan H; Petukhov PA
    Bioorg Med Chem; 2006 Dec; 14(23):7936-42. PubMed ID: 16919961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unbinding of nicotine from the acetylcholine binding protein: steered molecular dynamics simulations.
    Liu X; Xu Y; Wang X; Barrantes FJ; Jiang H
    J Phys Chem B; 2008 Apr; 112(13):4087-93. PubMed ID: 18327929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactions between alpha-conotoxin MI and the Torpedo marmorata receptor alpha-delta interface.
    Cortez L; Marino-Buslje C; de Jiménez Bonino MB; Hellman U
    Biochem Biophys Res Commun; 2007 Mar; 355(1):275-9. PubMed ID: 17292857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alpha-conotoxin residues that interact at close range with gamma-tyrosine-111 and mutant delta-tyrosine-113 on the Torpedo nicotinic acetylcholine receptor.
    Vélez-Carrasco W; Valdés S; Agresar L; Lettich A; Guerra AY; Hann RM
    Biochemistry; 2004 Oct; 43(39):12700-8. PubMed ID: 15449960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Acetylcholine-binding proteins: functional and structural homologs of nicotinic acetylcholine receptors.
    Smit AB; Celie PH; Kasheverov IE; Mordvintsev DY; van Nierop P; Bertrand D; Tsetlin V; Sixma TK
    J Mol Neurosci; 2006; 30(1-2):9-10. PubMed ID: 17192605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight in nAChR subtype selectivity from AChBP crystal structures.
    Rucktooa P; Smit AB; Sixma TK
    Biochem Pharmacol; 2009 Oct; 78(7):777-87. PubMed ID: 19576182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Docking of alpha-cobratoxin suggests a basal conformation of the nicotinic receptor.
    Konstantakaki M; Changeux JP; Taly A
    Biochem Biophys Res Commun; 2007 Aug; 359(3):413-8. PubMed ID: 17555709
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of the α-conotoxin Vc1.1 binding site on the α9α10 nicotinic acetylcholine receptor.
    Yu R; Kompella SN; Adams DJ; Craik DJ; Kaas Q
    J Med Chem; 2013 May; 56(9):3557-67. PubMed ID: 23566299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. d-Amino Acid Substitution of α-Conotoxin RgIA Identifies its Critical Residues and Improves the Enzymatic Stability.
    Ren J; Zhu X; Xu P; Li R; Fu Y; Dong S; Zhangsun D; Wu Y; Luo S
    Mar Drugs; 2019 Feb; 17(3):. PubMed ID: 30823399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Residues Responsible for the Selectivity of α-Conotoxins for Ac-AChBP or nAChRs.
    Lin B; Xiang S; Li M
    Mar Drugs; 2016 Oct; 14(10):. PubMed ID: 27727162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.