These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 19013824)

  • 1. Monte Carlo simulation of Auger-electron spectra.
    Grau Carles A; Kossert K
    Appl Radiat Isot; 2009 Jan; 67(1):192-6. PubMed ID: 19013824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Auger effect in physical and biological research.
    Nikjoo H; Emfietzoglou D; Charlton DE
    Int J Radiat Biol; 2008 Dec; 84(12):1011-26. PubMed ID: 19061125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and simulation of the relative lethality of Auger-electron-emitting radionuclides with a liquid-scintillation counter.
    Carles AG
    Int J Radiat Biol; 2007 Sep; 83(9):617-23. PubMed ID: 17654103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of a Monte Carlo rearrangement model for the activity determination of electron-capture nuclides by means of liquid scintillation counting.
    Kossert K; Grau Carles A
    Appl Radiat Isot; 2008; 66(6-7):998-1005. PubMed ID: 18343140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The LSC efficiency for low-Z electron-capture nuclides.
    Kossert K; Grau Carles A
    Appl Radiat Isot; 2006; 64(10-11):1446-53. PubMed ID: 16563780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo calculations of spectra and interaction probabilities for photons in liquid scintillators for use in the standardization of radionuclides.
    Zimmerman BE
    Appl Radiat Isot; 2006; 64(10-11):1492-8. PubMed ID: 16567098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo-simulated Auger electron spectra for nuclides of radiobiological and medical interest - a validation with noble gas ionization data.
    Pomplun E
    Int J Radiat Biol; 2012 Jan; 88(1-2):108-14. PubMed ID: 21913817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute activity measurement of the electron-capture-based radionuclides 139Ce, 125I, 192Ir and 65Zn by liquid scintillation coincidence counting.
    Van Wyngaardt WM; Simpson BR
    Appl Radiat Isot; 2006; 64(10-11):1454-8. PubMed ID: 16581256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of calculated spectra for the interaction of photons in a liquid scintillator. Example of 54Mn 835 keV emission.
    Cassette P; Ahn GH; Alzitzoglou T; Aubineau-Lanièce I; Bochud F; Garcia Torano E; Grau Carles A; Grau Malonda A; Kossert K; Lee KB; Laedermann JP; Simpson BR; van Wyngaardt WM; Zimmerman BE
    Appl Radiat Isot; 2006; 64(10-11):1471-80. PubMed ID: 16600600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mean values of the LMM Auger transition in a KLM model.
    Malonda AG; Carles AG; Garcia G
    Appl Radiat Isot; 2006; 64(10-11):1485-91. PubMed ID: 16574421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of the relative damaging effects of Auger cascades with gel scintillators.
    Grau Carles A
    Int J Radiat Biol; 2008 Dec; 84(12):1057-62. PubMed ID: 19061130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Win X-ray: a new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope.
    Gauvin R; Lifshin E; Demers H; Horny P; Campbell H
    Microsc Microanal; 2006 Feb; 12(1):49-64. PubMed ID: 17481341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CELLDOSE: a Monte Carlo code to assess electron dose distribution--S values for 131I in spheres of various sizes.
    Champion C; Zanotti-Fregonara P; Hindié E
    J Nucl Med; 2008 Jan; 49(1):151-7. PubMed ID: 18077517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of ion clusters by low-energy electrons in nanometric targets: experiment and Monte Carlo simulation.
    Bantsar A; Grosswendt B; Pszona S
    Radiat Prot Dosimetry; 2006; 122(1-4):82-5. PubMed ID: 17251251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo simulations of the response of a plastic scintillator and an HPGe spectrometer in coincidence.
    Joković DR; Dragić A; Udovicić V; Banjanac R; Puzović J; Anicin I
    Appl Radiat Isot; 2009 May; 67(5):719-22. PubMed ID: 19231223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of a radiation weighting factor for 99mTc.
    Pomplun E; Terrissol M; Kümmerle E
    Radiat Prot Dosimetry; 2006; 122(1-4):80-1. PubMed ID: 17145726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the biological efficiency of I-123 and I-125 decay on the molecular level.
    Terrissol M; Peudon A; Kummerle E; Pomplun E
    Int J Radiat Biol; 2008 Dec; 84(12):1063-8. PubMed ID: 19061131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved method for the calculation of the counting efficiency of electron-capture nuclides in liquid scintillation samples.
    Kossert K; Carles AG
    Appl Radiat Isot; 2010; 68(7-8):1482-8. PubMed ID: 20022256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods to determine the fluorescence and Auger spectra due to decay of radionuclides or due to a single atomic-subshell ionization and comparisons with experiments.
    Stepanek J
    Med Phys; 2000 Jul; 27(7):1544-54. PubMed ID: 10947257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the passage of fast electrons and the early stage of water radiolysis by the Monte Carlo method.
    Kaplan IG; Sukhonosov VYa
    Radiat Res; 1991 Jul; 127(1):1-10. PubMed ID: 2068265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.